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FOREWORD 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally consistent 

and structured as per the university‘s syllabi. It is a humble attempt to give 

glimpses of the various approaches and dimensions to the topic of study and 

to kindle the learner‘s interest to the subject 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories 

and presents them in a way that is easy to understand and comprehend.  

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added that 

despite enormous efforts and coordination, there is every possibility for 

some omission or inadequacy in few areas or topics, which would definitely 

be rectified in future. 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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BLOCK-1 ELEMENTARY NUMBER 

THEORY
Introduction to Block 

The branch  of number theory that investigates properties of the integers by 

elementary methods. These methods include the use of divisibility 

properties, various forms of the axiom of induction and combinatorial 

arguments. Sometimes the notion of elementary methods is extended by 

bringing in the simplest elements of mathematical analysis. Traditionally, 

proofs are deemed to be non-elementary if they involve complex numbers. 

Usually, one refers to elementary number theory the problems that arise in 

branches of number theory such as the theory of divisibility, of congruences, 

of arithmetic functions, of indefinite equations, of partitions, of additive 

representations, of the approximation by rational numbers, and of continued 

fractions. Quite often, the solution of such problems leads to the need to go 

beyond the framework of elementary methods. Occasionally, following the 

discovery of a non-elementary solution of some problem, one also finds an 

elementary solution of it. 
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UNIT 1: DIVISIBILITY THEORY I 

STRUCTURE 

1.0 Objectives 

1.1 Introdcution 

1.1.1   Definition 

1.1.2  Divisibility Properties 

1.1.3   Definition  

1.2 Division 

1.2.1 Theorem 

     1.2.3 Definition 

     1.2.4   Theorem  

1.3 Greatest Common Divisor 

1.3.1 Definition 

      1.3.2 Definition 

  1.3.3 Theorem 

  1.3.4 Definition 

 1.3.5 Theorem 

     1.3.6 Definition 

     1.3.7 Theorem 

     1.3.8 Theorem 

     1.3.9 Theorem 

1.4 Summing UP 

1.5 Keywords 

1.6 Questions for review 

1.7 Suggested Readings 

1.8 Answer to check your progress 

1.0 OBJECTIVES 

 What is a Divisibility?

 Whatis divison?

 What are greatest  common divisor?
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 What is prime?

1.1 INTRODUCTION 

All numbers are integers, unless specified otherwise. Thus in the following 

definition, d, n, and k are integers. 

1.1.1 Definition 

The number d divides the number n if there is a k such thatn = dk. (Alternate 

terms are: d is a divisor of n, or d is a factor of n, or n isa multiple of d.) This 

relationship between d and n is symbolized d | n. Thesymbol d ∤n means that 

d does not divide n.Note that the symbol d | n is different from the fraction 

symbol d/n. Itis also different from n/d because d | n is either true or false, 

while n/d is arational number. 

1.1.2 Divisibility Properties 

 For all numbers n, m, and d, 

(1) d | 0 

(2) 0 | n =⇒ n = 0 

(3) 1 | n 

(4) (Reflexivity property) n | n 

(5) n | 1 =⇒ n = 1 or n = −1 

(6) (Transitivity property) d | n and n | m =⇒ d | m 

(7) (Multiplication property) d | n =⇒ ad | an 

(8) (Cancellation property) ad | an and a ≠ 0 =⇒ d | n 

(9) (Linearity property) d | n and d | m =⇒ d | an + bm for all a and b 

(10) (Comparison property) If d and n are positive and d | n then d ≤ n 

Proof:For the first item, take k = 0. 
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For the second, if 0 | n then n = 0·k = 0. 

The next item holds because we can take n as the k in the definition. 

 Reflexivity is similar: n = n · 1 shows that it holds. 

The next property followsimmediately from Basic Axiom 3 for Z, 

from the first Appendix. 

For Transitivity, assume the d | n and that n | m. Then n = dk1 andm = nk2 for 

some k1, k2∈Z. Substitute to get m = nk2 = (dk1)k2.  

By theAssociative Property of Multiplication, (dk1)k2 = d(k1k2), which 

shows that ddivides m. 

Multiplication also follows from associativity. Assume that d | n so thatn = 

dk. Then an = a(dk) = (ad)k shows that ad | ak. 

For Cancellation, assume that a 6= 0 and that ad | an. Then there is a ksuch 

that an = (ad)k. We will show that n = dk. Assume first that a >0. Bythe 

Trichotomy Property from the first Appendix, either n > dk or n = dk orn < 

dk. If n > dk then we have that an > a(dk) = (ad)k, which contradicts 

thisparagraph‘s assumption that an = (ad)k. If n < dk then an < a(dk) = (ad)k, 

also contradicting the assumption. Therefore n = dk, and so d | n. 

Theargument for the a <0 case is similar. 

To verify Linearity, suppose that d | n and d | m so that n = dk1 andm = dk2 

for k1, k2 ∈Z. Then an + bm = a(dk1) + b(dk2) = d(ak1 + bk2) showsthat d | 

(an + bm). 

Finally, for Comparison, assume that d, n >0 and d | n. Then n = dkfor some 

k. Observe that k is positive because the other two are positive.

ByTrichotomy, either d < n or d = n or d > n. We will show that the d > n 

caseis not possible.  

Assume that d > n. Then dk > nk follows by one of the firstAppendix‘s 

Properties of Inequalities. But that gives n > nk, which means thatn · 1 > n · 

k despite that fact that k is positive and so 1 ≤ k. This is impossiblebecause it 

violates the same Property of Inequalities.  

1.1. 3 Definition 
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An integer n is even (or has even parity) if it is divisible by 2and is odd (or is 

of odd parity) otherwise. 

Lemma  

Recall that |a| equals a if a ≥ 0 and equals −a if a <0. 

(1) If d | a then −d | a and d | −a. 

(2) If d | a then d | |a| 

(3) The largest positive integer that divides a nonzero number a is |a|. 

Proof. For (1), if d | a then a = dk for some k. It follows that a = 

(−d)(−k)and since −d and −k are also integers, this shows that −d | a. It also 

followsthat −a = (−k)d, and so d | −a. 

For (2), suppose first that a is nonnegative. Then |a| = a and so if d | athen d 

| |a|. Next suppose that a is negative. Since |a| = −a for negative a, andsince 

(1) shows that d | −a, and d therefore divides |a|. 

 

For (3), first note that |a| actually divides a: in the a ≥ 0 case |a| | a 

becausein this case |a| = a and we know that a | a, while in the a <0 case we 

have thata = |a|(−1), so that |a| is indeed a factor of a. We finish by showing 

that |a|is maximal among the divisors of a. Suppose that d is a positive 

number thatdivides a. Then a = dk for some k, and also −a = d(−k). Thus d | 

|a|, whethera is positive or negative. So by the Comparison property of 

Theorem 1.1.2, we 

have that d ≤ |a|. 

 

1.2 DIVISION 
 

1.2.1 Theorem  

Where a and b >0 are integers, there are integers q and r,called the quotient 

and the remainder on division of a by b, satisfying these twoconditions. 

   a = bq + r  0 ≤ r < b 
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Further, those integers are unique. 

 

Note that this result has two parts. One part is that the theorem says 

thereexists a quotient and remainder satisfying the conditions. The second 

part isthat the quotient, remainder pair are unique: no other pair of numbers 

satisfiesthose conditions. 

Proof. To verify that for any a and b >0 there exists an appropriate 

quotientand remainder we need only produce suitable numbers. Consider 

these. 

 

   ⌊
 

 
⌋  r = a – bq 

 

Obviously a = bq + r, so these satisfy the first condition. To finish the 

existencehalf of this proof, we need only check that 0 ≤ r < b. The Floor 

Lemma fromthe Some Properties of ℝappendix gives 

 

 
   ⌊

 

 
⌋  

 

 
 

 

Multiply all of the terms of this inequality by −b. Since b is positive, −b 

isnegative, and so the direction of the inequality is reversed. 

      ⌊
 

 
⌋     

 

    a to all three terms of the inequality and replace⌊    ⌋by q to get 

b > a − bq ≥ 0. 

 

Since r = a − bq this shows that 0 ≤ r < b. 

 

We still must prove that q and r are unique. Assume that there are 

twoquotient, remainder pairs 

    a = bq1 + r1 with 0 ≤ r1< b 

and 

    a = bq2 + r2 with 0 ≤ r2< b. 

Subtracting 
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  0 = a − a = (bq1 + r1) − (bq2 + r2) = b(q1− q2) + (r1− r2) 

implies that 

(1)    r2− r1 = b(q1− q2). 

We must show that the two pairs are equal, that r1 = r2 and q1 = q2. To 

obtaina contradiction, suppose otherwise. First suppose that r1≠r2. Then one 

mustbe larger than the other; without loss of generality assume that r2 > r1. 

Then 

    0 ≤ r1 < r2< b 

and so r2−r1< b. But (1) shows that b divides r2−r1 and by the 

Comparisonproperty of Theorem 1.1. 2 this implies that b ≤r2− r1. This is 

the desiredcontradiction and so we conclude that r1 = r2. With that, from 

equation (1) wehave 0 = b(q1−q2). Since b >0, this gives that q1−q2 = 0 and 

so q1 = q2. 

Corollary  

The number d divides the number n if and only if on divisionof n by d the 

remainder is 0. 

Proof. If the remainder is 0 then n = dq + 0 = dq shows that d | n. For 

theother half, if d | n then for some k we have  

    n = dk = dk + 0 (with 0 ≤ 0 < d) 

and the fact that the quotient, remainder pair is uniqus shows that k and 

0must be the quotient and the remainder.  

That corollary says that Theorem 1 generalizes the results on divisibility. 

For instance, fix b = 3. Then, given a, instead of only being able to say thata 

is divisible or not, we can give a finer description: a leaves a remainder of 

0(this is the case where b | a), or 1, or 2. 

 

1.2.3 Definition 

For b >0 define a mod b = r where r is the remainder when ais divided by b. 

For example: 23 mod 7 = 2 since 23 = 7 · 3 + 2 and −4 mod 5 = 1 since−4 = 

5 · (−1) + 1. 
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The division algorithm also works in [x], the set of polynomials with 

rational coefficients, and [x], the set of all polynomials with real 

coefficients. For the sake of our study, we will onlyfocus on [x]. If a(x) and 

b(x) are two polynomials, then we can find a unique quotient and remainder 

polynomial, q(x), r(x) ∈[x], such that 

 

a(x) = b(x)q(x) + r(x),   deg(r) <deg(b)   or r(x) = 0. 

 

Example:Calculate q(x) and r(x) such that a(x) = b(x)q(x) + r(x) for a(x) = 

x
4
 + 3x

3
+ 10 and b(x) = x

2 
− x. 

 

Solution:We begin by dividing the leading term of a(x) by the leading term 

ofb(x):
  

     . Therefore, we multiply b(x) by x
2
 and subtract the result 

from 

 

a(x):x
4
 + 3x

3
+ 10 = (x

2 
− x)( x

2
) + (4x

3
 + 10). 

 

Now, in order to get rid of the 4x
3
 term in the remainder, we have to divide 

this bythe leading term of b(x), x
2
:
   

  = 4x. We add this to the quotient and 

subtractthis multiplication from the remainder in order to get rid of the cubic 

term: 

 

 x
4
 + 3x

3
+ 10 = (x

2
− x)( x

2
 + 4x) + (4x

2
 + 10.) 

 

One may be tempted to stop here, however, the remainder and b(x) are 

bothquadratic and we need deg(r(x)) <deg(b(x)). Therefore, in order to 

remove thequadratic term from the remainder, we divide this term, 4 x
2
, by 

the leading termof b(x), x
2
:
   

  = = 4. We then add this to thequotient, and 

subtract, in order toget 

 

  x
4
 + 3x

3
+ 10 = (x

2
− x)(x

2
 + 4x+ 4) + (4x + 10). 
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Therefore, q(x) = x
2
 + 4x + 4and r(x) = 4x+10. We verify that indeed 

deg(r(x)) =1 <deg(b(x)) =2, therefore, we are finished. 

[Note: The numbers will not always come out as nicely as they did in the 

aboveexpression, and we will occasionally have fractions.] 

1.2.3 Theorem 

For two polynomials, a(x), b(x) ∈Q[x], prove that thereexists a unique 

quotient andremainder polynomial, q(x) and r(x), such that 

 a(x) = b(x)q(x) + r(x), deg(r) <deg(b) or r(x) = 0. 

 

Proof. For any two polynomials a(x) and b(x), we can find q(x) and r(x) such 

that  

    a(x) = b(x)q(x) + r(x)  

by repeating the procedure above.  

The main idea is to eliminate the leading term of r(x) repeatedly, until 

deg(r(x)) <deg(b(x)). 

 

•Divide the leading term of a(x) by the leading term of b(x) in order to 

obtainthe polynomial q1(x). In the example above, we found q1(x) = 
  

  = 

x
2
and 

 

r1(x) = 4x3 + 10. Then, a(x) = b(x) q1(x) + r1(x). 

 

• Divide the leading term of r1(x) by the leading term of b(x) in order to 

obtainthe polynomial q2(x). In the example above, we found q2(x) =
   

  = 4x. 

Then, add this quotient to q1(x) and subtract in order to find r2(x): 

    a(x) = b(x) (q1(x) + q2(x)) + r2(x). 

In the example above, r2(x) = 4x
2
 + 10. 

Repeat the above step of dividing the leading term of rj(x) by the 

leadingterm of b(x) and adding this quotient to the previous quotients. So 
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long asdeg(rj(x)) ≥ deg(b(x)), this will decrease the degree of the remainder 

polynomial by eliminating its leading term.  

Stop once deg(rj(x)) <deg(b(x)),at which point 

 

 

 

 

For the uniqueness part, note that if there exists distinct quotients q1(x),q2(x) 

and remainders r1(x), r2(x) with deg(r1(x)) <deg(b(x)) and deg(r2(x)) 

<deg(b(x)) found through the division algorithm, we willarrive at a 

contradiction: 

 

a(x) = b(x)q1(x) + r1(x) 

a(x) = b(x)q2(x) + r2(x) 

b(x)(q1(x) − q2(x)) = r2(x) − r1(x). 

 

However, assuming that q1(x) and q2(x) are distinct, we havedeg [b(x)(q1(x) 

− q2(x)] ≥ deg(b(x)). 

 

On the other hand, since deg(r1(x)) <deg(b(x)) and deg(r2(x)) <deg(b(x)), 

weknow that 

    deg (r2(x) − r1(x)) <deg(b(x)). 

 

Therefore, it is impossible for the left hand side of the equation above to 

equalthe right hand side since the degrees of the polynomials are different. 

 

Example: Show that the expression a (a2 + 2)/3 is an integer forall a :=: 1.  

 

Solution: According to the Division Algorithm, every a is of the form 3q, 

3q + 1, or3q + 2. Assume the first of these cases. Then 
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                                         a = 3q + 1, then 

 

                        

 
                        

 

and a(a
2
+ 2)/3 is an integer in this instance also. Finally, for a = 3q + 2, we 

obtain 

 

                        

 
                        

 

an integer once more. Therefore, this result is established in all cases. 

 

Example: Prove that for every positive integer n the number 3(1
5
+2

5
+ 

...+n
S
)is divisible by 1

3
+2

3
+ ... +n

3
• 

For positive integer n, we have 

 

 

 

 

(which follows by induction). By induction, we obtain also the identity 

 

 

 

 

for all positive integer n. It follows from these formulas that 

 

 

 

which proves the desired property. 

Example:For positive integer n, find which of the two numbers an = 2
2n+1

 – 

2
n+1

+1and bn= 2
2n+1

+2
n+1

+1is divisible by 5 and which is not. 

Solutions: Consider four cases: 
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(a) n = 4k, where k is a positive integer. Then 

an = 2
8k +1

– 2
4k + 1

+ 1 ≡ 2 – 2 + 1 ≡ 0 (mod 5) 

bn = 2
8k +1

+ 2
4k + 1

+ 1≡ 2 + 2 + 1 ≡ 0 (mod 5) 

(since 2
4
≡1 (mod 5), which implies 2

4k
≡2

8k
≡1 (mod 5). 

(b) n = 4k+1, k = 0, 1, 2, .... Then 

an = 2
8k +3

– 2
4k + 2

+ 1 ≡ 8 – 4 + 1 ≡ 0 (mod 5) 

bn = 2
8k +3

+ 2
4k + 2

+ 1≡ 8 + 4 + 1 ≡ 3 (mod 5) 

(c) n = 4k+2, k = 0, 1, 2, .... Then 

an = 2
8k +5 

– 2
4k + 3 

+ 1 ≡ 2 – 8 + 1 ≡ 0 (mod 5) 

bn = 2
8k +5 

+ 2
4k + 3

+ 1≡ 2 + 8 + 1 ≡ 0 (mod 5) 

(d) n = 4k+3, k = 0, 1, 2, .... Then 

 

an = 2
8k +7 

– 2
4k + 4 

+ 1 ≡ 2 – 8 + 1 ≡ 0 (mod 5) 

bn = 2
8k +7 

+ 2
4k + 4

+ 1≡ 2 + 8 + 1 ≡ 0 (mod 5) 

 

Thus, the numbers an are divisible by 5 only for n ≡ 1 or 2 (mod 4), whilethe 

numbers bnare divisible by 5 only for n ≡0 or 3 (mod 4). Thus  one andonly 

one of the numbers anand bnis divisible by 5. 

 

1.3 GREATEST COMMON DIVISOR 
 

1.3.1 Definition  

An integer is a common divisor of two others if it divides bothof them. 

We write C(a, b) for the set of numbers that are common divisors of a and b. 

1.3.2 Definition 

The greatest common divisor of two nonzero integers a and b,gcd(a, b), is 

the largest integer that divides both, except that gcd(0, 0) = 0. 

The exception is there because every number divides zero, and so we 
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speciallydefine gcd(0, 0) to be a convienent value. 

 

Example The set of common divisors of 18 and 30 isC(18, 30) = {−1, 1, −2, 

2, −3, 3, −6, 6}. 

So, gcd(18, 30) = 6. 

Lemma  

Gcd (a, b) = gcd (b, a). 

Proof. Clearly the two sets C (a, b) and C(b, a) are equal. It follows that 

theirlargest elements are equal, that is, that gcd (a, b) = gcd(b, a).  

Lemma  

Gcd (a, b) = gcd (|a|, |b|). 

Proof. If a = 0 and b = 0 then |a| = a and |b| = b, and so in this casegcd(a, b) 

= gcd(|a|, |b|). Suppose that one of a or b is not 0. Lemma1.1.4 showsthat d | 

a ⇔ d | |a|. It follows that the two sets C(a, b) and C(|a|, |b|) are thesame 

set. So the largest member of that set, the greatestcommon divisor of aand b, 

is also the greatest common divisor of |a| and |b|.  

Lemma  

If a ≠0 or b ≠0, then gcd (a, b) exists and satisfies0 <gcd(a, b) ≤ min{|a|, 

|b|}. 

Proof. Note that gcd(a, b) is the largest integer in the set C(a, b). Since 1 | 

aand 1 | b we know that 1 ∈ C(a, b). So the greatest common divisor must 

be atleast 1, and is therefore positive. On the other hand, if d ∈ C(a, b) then 

d | |a|and d | |b|, so d is no larger than |a| and no larger than |b|.  

Thus, d is at mostthe minimum of |a| and |b|. qed 

 

Example The above results give thatgcd (48, 732) = gcd(−48, 732) = 

gcd(−48, −732) = gcd(48, −732). 

We also know that 0 <gcd(48, 732) ≤ 48. Since if d = gcd(48, 732) then d | 
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48,to find d we need check only for positive divisors of 48 that also divide 

732. 

 

Remark Observe that the first two lemmas, which draw conclusions 

aboutthe properties of the gcd operator, preceed Lemma 1.3.5, which shows 

that thegcd exists.If two numbers have a greatest common divisor of 1 then 

they have nonontivial common factors. 

1.3.3 Theorem 

 For integers a, b, c, the following hold: 

(a) a|0, 1|a, a|a. 

(b) a|1 if and only if a= ±1. 

(c) If a|b and c|d, then ac|bd. 

(d) If a|b and b|c, then a|c 

(e) a|b and b|a if and only if a = ±b. 

(f) If a|b and b ≠0, then |a| ≤ |b| 

(g) If a | band a | c, then a |(bx + cy) for arbitrary integers x andy. 

 

Proof. We shall prove assertions (f) and (g), leaving the other parts as an 

exercise. Ifa|b, then there exists an integer c such that b = ac; also, b ¥= 0 

implies that c ≠0. 

Upon taking absolute values, we get |b|= |ac| = |a||c|. Because c ≠0, it 

followsthat |c| ≥1, whence |b|= |a||c|≥ |a|. 

As regards (g), the relations a|band a|censure that b = ar and c = as 

forsuitable integers r and s. But then whatever the choice of x and y, 

 

  bx + cy = arx + asy = a(rx + sy) 

 

Because rx + sy is an integer, this says that a |(bx + cy), as desired. 

It is worth pointing out that property (g) of Theorem 2.2 extends by 

inductionto sums of more than two terms. That is, if a|bkfork = 1, 2, .., n, 

then 
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  a |(b1x1 + b2x2+ ···+ bnxn) 

 

for all integers x1, x2 , …, xn.  

 

If a and b are arbitrary integers, then an integer d is said to be a 

commondivisor of a and b if both d Ia and d Ib. Because 1 is a divisor of 

every integer1 is a common divisor of a and b; hence, their set of positive 

common divisors isnonempty.  

Now every integer divides zero, so that if a= b = 0, then every integerserves 

as a commondivisor of a and b. In this instance, the set of positive 

commondivisors of a and b is infinite. However, when at least one of a or b 

is different fromzero, there are only a finite number of positive common 

divisors. Among these, thereis a largest one, called the greatest common 

divisor of a and b. 

1.3.4 Definition  

Let a and b be given integers, with at least one of them different fromzero. 

The greatest common divisor of a and b, denoted by gcd(a, b), is the 

positiveinteger d satisfying the following: 

(a) d|a and d|b. 

(b) If c|a and c|b, then c ≤d. 

 

Example : The positive divisors of -12 are 1, 2, 3, 4, 6, 12, whereas those of 

30are 1, 2, 3, 5,6, 10, 15, 30; hence, the positive common divisors of -12 and 

30 are 1,2, 3, 6. 

 

 Because 6 is the largest of these integers, it follows that  

    Gcd (-12, 30) = 6.  

Inthe same way, we can show that 

gcd(-5, 5) = 5   gcd(8 , 17) = 1   gcd (-8, -36) = 4 
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1.3.5 Theorem 

Given integers a and b, not both of which are zero, there exist integersx and 

y such that 

     Gcd (a, b) = ax+ by 

 

Proof. Consider the setS of all positive linear combinations of a and b: 

   S = {au+ bv |au+ bv > 0; u, v integers} 

Notice first that Sis not empty. For example, ifa ≠0, then the integer |a| = au 

+ b ·0lies inS, where we choose u = 1 or u = -1 according as a is positive or 

negative.By virtue of the Well-Ordering Principle, S must contain a smallest 

element d. Thus,from the very definition of S, there exist integers x andy for 

which d =ax+ by. Weclaim that d = gcd(a, b). 

 

Taking stock of the Division Algorithm, we can obtain integers q and r such 

that 

a= qd + r, where 0 ::S r <d. Then r can be written in the form 

   r =a –qd =a –q(ax +by) 

    = a(l–qx) + b(–qy) 

If r were positive, then this representation would imply that r is a member of 

S,contradicting the fact that d is the least integer in S (recall that r <d). 

Therefore,r = 0, and so a = qd, orequivalently d|a. By similar reasoning, d|b, 

the effect ofwhich is to make d a common divisor of a and b. 

Now if cis an arbitrary positive common divisor of the integers a and b, then 

part(g) of Theorem 1.3.5 allows us to conclude that c |(ax+ by); that is, c | d. 

By part (f) ofthe sametheorem, c = |c|≤ |d| = d, so that d is greater than every 

positive commondivisor of a and b. Piecing the bits of information together, 

we see that d = gcd (a , b). 

 

A perusal of the proof of Theorem 1.3.7 reveals that the greatest common 

divisorof a  and b may be described as the smallest positive integer of the 

form ax + by. 

Consider the case in which a = 6 and b = 15. Here, the setS becomes 
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  s = {6(–2) + 15 ∙ 1, 6(–1) + 15 ∙ 1, 6 ∙ 1 + 15 ∙ 0, 0 0 ….} 

  = {3, 9, 6, ….} 

We observe that 3 is the smallest integer inS, where 3 = gcd(6, 15). 

The nature of the members of S appearing in this illustration suggests 

anotherresult, which we give in the next corollary. 

Lemma 

 If a and b are given integers, not both zero, then the setT = {ax+ by |x, yare 

integers} is precisely the set of all multiples of d = gcd(a, b). 

 

Proof. Because d |a and d | b, we know that d|(ax + by) for all integers x, y. 

Thus,every member ofT is a multiple of d. Conversely, d may be written as d 

= ax0+ by0for suitable integers x0and y0 , so that any multiple nd of dis of the 

form 

  nd = n(ax0+ by0) = a(nx0) + b(ny0) 

 

Hence, nd is a linear combination of a and b, and, by definition, lies in T.It 

may happen that 1 and -1 are the only common divisors of a given pair 

ofintegers a and b, whence gcd (a, b)= 1.  

 

For example: 

   gcd (2, 5) = gcd (–9, 16) = gcd(–27, –35) = 1 

This situation occurs often enough to prompt a definition 

1.3.6 Definition 

Two numbers are relatively prime if they have a greatest common divisor of 

1.Although the relatively prime relationship is symmetric — if gcd(a, b) = 

1then gcd(b, a) = 1 — we sometimes state it as ―a is relatively prime to b.‖ 

 

1.3.7 Theorem 
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 Let a and b be integers, not both zero. Then a and b are relatively primeif 

and only if there exist integers x and y such that 1 = ax + by. 

 

Proof. If a and bare relatively prime so that gcd(a, b)= 1, then Theorem 

1.3.8 guarantees the existence of integers x and y satisfying 1 = ax + by. As 

for the converse,suppose that 1 =ax+ by forsomechoiceofx andy, and thatd = 

gcd(a, b). Becaused | a and d | b, Theorem 1.3.6 yields d|(ax+ by), or d |1. 

Inasmuch as dis a positiveinteger, this last divisibility condition forces d to 

equal1 (part (b) of Theorem 1.3.6 playsa role here), and the desired 

conclusion follows. 

This result leads to an observation that is useful in certain situations; 

namely, 

Lemma 

 If g = gcd (a, b) then gcd(a/g, b/g) = 1. 

 

Proof.The greatest common divisor of a/g and b/g must exist, by the 

priorresult. Let gcd(a/g, b/g) = k. Then k is a divisor of both a/g and b/g so 

thereare numbers ja and jb such that jak = a/g and jbk = b/g.  

Therefore ja(kg) = aand jb(kg) = b, and so kg is a common divisor of a and 

b. If k >1 this would 

be a contradiction, because then kg > g but g is the greatest common divisor. 

Therefore k = 1.  

 

Let us observe that gcd (-12, 30) = 6andgcd (-12/6, 30/6) = gcd(-2, 5) = 1as 

it should be.It is not true, without adding an extra condition, that a | c and b|c 

together giveab | c.  

For instance, 6 | 24 and 8 | 24, but 6 · 8 ∤24. If 6 and 8 were relatively prime, 

of course, this situation would not arise. This brings us to next Lemma as 

follows. 

Lemma 
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 If a |c and b|c, with gcd (a, b)= 1, then ab|c. 

 

Proof.Inasmuch as a |c and b|c, integers rands can be found such that c = ar 

= bs. 

Now the relation gcd (a, b)= 1 allows us to write 1 =ax+ by for some choice 

ofintegers x andy. Multiplying the last equation by c, it appears that 

   c = c · 1 = c(ax +by) = acx +bey 

If the appropriate substitutions are now made on the right-hand side, then 

   c = a(bs)x + b(ar)y = ab(sx + ry) 

or, as a divisibility statement, ab | c. 

 

1.3.7 Theorem  

Euclid's lemma. If a |be, with gcd(a, b)= 1, then a | c. 

 

Proof.We start again from Theorem 1.3.8, writing 1 =ax+ by, where x and y 

areintegers. Multiplication of this equation by c produces 

   c = 1 · c =(ax + by)c = acx +bey 

 

Because a | ac and a | be, it follows that a |(acx +bey), which can be recast 

as a | c.If a and b are not relatively prime, then the conclusion of Euclid's 

lemma mayfail to hold.  

For example: 12 |9 · 8, but 12 ∤9 and 12 ∤8. 

The subsequent theorem often serves as a definition ofgcd(a , b). The 

advantageof using it as a definition is that order relationship is not involved. 

Thus, it may beused in algebraic systemshaving no order relation. 

1.3.8 Theorem  

Let a, b be integers, not both zero. For a positive integer d, 

d = gcd(a, b) if and only if 

(a) d |a and d | b. 



Notes 

24 

(b) Whenever cIa and c | b, then c |d. 

 

Proof.To begin, suppose that d = gcd(a, b). Certainly, d Ia and d Ib, so that 

(a)holds. In light of Theorem 2.3, d is expressible as d = ax + by for some 

integers x, y.Thus, if c 1a and c Ib, then c I(ax+ by), or rather c Id. In short, 

condition (b) holds. 

Conversely, let d be any positive integer satisfying the stated conditions. 

Given anycommon divisor c of a and b, we have c | d from hypothesis (b). 

The implication isthat d≥ c, andconsequently dis the greatest common 

divisor of a and b. 

 

Example: Prove that if a and b are different integers, then there exist 

infinitelymany positive integers n such that a+n and b+n are relatively 

prime. 

Solutions: Let a , and b be two different integers. Assume for instance a <b 

,and let  

    n = (b-a)k+ I-a.  

For k sufficiently large, n will be positive integer. 

We have  

    a+n = (b-a)k+l, b+n = (b-a) (k+1)+1,  

hence a+n and b+nwill be positive integers.  

If we had d|a+n and d|b+n, we would haved|a-b, and, in view of d|a+n, also 

d|l, which implies that d = 1. Thus, 

    (a+n, b+n) = 1. 

 

Example: Prove that every integer> 6 can be represented as a sum of 

twointegers > 1 which are relatively prime. 

Solutions: If n is odd and> 6, then n = 2+(n-2), where n-2 is odd and> 1, 

and we have (2, n-2) =1. 

The following proof for the case of even n > 6 is due to A. Makowski.If n = 

4k, where k is aninteger > 1 (since n > 6), then  

  n = (2k-1)+ +(2k+1), and 2k+1>2k-1> 1 (since k >1).  
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The numbers 2k-1and2k+l, as consecutive odd numbers, are relatively 

prime. 

If n = 4k+2, where k is an integer > 1 (since n > 6), we have  

   n = (2k+3)+(2k-l), where 2k+3 >2k-l > 1 (since k > 

1). Thenumbers 2k +3 and 2k-1are relatively prime since if 0 <d |2k+3 

andd|2k-1, then d\(2k+3)-(2k-1) or d|4. Now, d as a divisor of an oddnumber 

must be odd, hence d = 1, and (2k+3, 2k-l) = 1. 

Check Your Progress  

1. State and explain the division properties 

 

2. What do you understand by Relatively prime? 

 

 

3. Define Greatest common divisor and highlight its two properties. 

 

 

 

1 .4 SUMMARY 
 

The Division Algorithm, acts as the foundation stone in the integers. 

 

1.5 KEYWORDS 
 

1. Prime - A prime number is a whole number greater than 1 whose 

only factors are 1 and itself.  

2. Division - The division is a method of distributing a group of things 

into equal parts. 
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3. Divisor – Divisor is a number or an integer which divides any other 

number to give the result 

4. Hypothesis – A statement that might be true, which might then be 

tested. 

5. Implication - the conclusion that can be drawn from something 

although it is not explicitly stated. 

 

1 .6 QUESTIONS FOR REVIEW 
 

1. Find all integers x≠3 such that x-3|x
3
-3. 

2. Prove that there exists infinitely many positive integers n such 

that4n
2
+1 is divisible both by 5 and 13. 

3. Find all integers n > 1 such that 1
n
+2

n
+ ... +(n-l)

n 
is divisible by n. 

4. Given integers a, b, c, d, verify the following: 

(a) If a |b, then a | be. 

(b) If a | band a | c, then a
2
|be. 

(c) a | b if and only if ac | be, where c ≠0. 

(d) If a Iband c Id, then ac | bd. 

5. Prove or disprove: If a | (b +c), then either a | bora | c 

 

1.7 SUGGESTED READING 
 

1. David M. Burton, Elementary Number Theory, University of New 

Hampshire. 

2. G.H. Hardy, and , E.M. Wrigh,. An Introduction to the Theory of 

Numbers (6th ed, Oxford University Press, (2008). 

3. W.W. Adams and L.J. Goldstein, Introduction to the Theory of 

Numbers, 3rd ed., Wiley Eastern, 1972. 

4. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge 

University Press, Cambridge, 1984. 

5. I. Niven and H.S. Zuckerman, An Introduction to the Theory of 

Numbers, 4th Ed., Wiley, New York, 1980. 
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6. T.M. Apostol, Introduction to Analytic number theory, UTM, Springer, 

(1976). 

7. J. W. S  Cassel, A. Frolich, Algebraic number theory, Cambridge. 

8. M Ram Murty, Problems in analytic number theory, springer. 

9. M Ram Murty and Jody Esmonde, Problems in algebraic number theory, 

springer. 

1.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. [(1) d | 0 

(2) 0 | n =⇒ n = 0 

(3) 1 | n 

(4) (Reflexivity property) n | n 

(5) n | 1 =⇒ n = 1 or n = −1 

(6) (Transitivity property) d | n and n | m =⇒ d | m 

(7) (Multiplication property) d | n =⇒ ad | an 

(8) (Cancellation property) ad | an and a ≠ 0 =⇒ d | n 

(9) (Linearity property) d | n and d | m =⇒ d | an + bm for all a and b 

(10) (Comparison property) If d and n are positive and d | n then d ≤ 

n. Provide the proofs –1.1.2] 

2. [Two numbers are relatively prime if they have a greatest common 

divisor of 1.Although the relatively prime relationship is symmetric 

— if gcd(a, b) = 1then gcd(b, a) = 1 — we sometimes state it as ―a is 

relatively prime to b.‖Hint – Provide the theorem and proof –1.3.10 

and 1.3.11] 

3. [The greatest common divisor of a and b, denoted by gcd(a, b), is the 

positiveinteger d satisfying the following: 

(a) d|a and d|b. 

(b) If c|a and c|b, then c  d.—1.3.7] 
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UNIT 2: DIVISIBILITY THEORY -II 
 

STRUCTURE 

 
2.0 Objectives 

2.1 The Euclidean Algorithm 

            2.1.1 Theorem  

            2.1.2 Theorem 

2.2 The Diophantine Equation 

 2.2.1 Definitions 

 2.2.2 Linear Diophantine Equations 

            2.2.3 Thereom  

            2.2. 4 How do you find a particular solution? 

            2.2.5 How do you find all solutions? 

            2.2.6 Positive solutions of LDE: 

            2.2.7 LDEs with three variables   

2.3 Summary 

2.4 Keyword 

2.5 Questions For review 

2.6 Suggested Readings 

2.7 Answer to check your progress 

 

2.0 OBJECTIVE 
 

 Understand the The Euclidean Algorithm 

 What is THE DIOPHANTINE EQUATION? 

 

2.1 THE EUCLIDEAN ALGORITHM 
 

Euclidean algorithm is a method for efficiently finding the greatest common 

divisor of two numbers. The GCD of two integers X and Y is the largest 

number that divides both of X and Y. 
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We can efficiently compute the greatest common divisor of two 

numbers.We first reduce the problem. Since gcd(a, b) = gcd(|a|, |b|) (and 

gcd(0, 0) =0), we need only give a method to compute gcd(a, b) where a and 

b are nonnegative. And, since gcd(a, b) = gcd(b, a), it is enough for us to 

give a method fora ≥ b ≥ 0. 

 

Euclidean algorithm concept can be illustrated as : 

Let a and b be two integers whose greatest common divisor is desired. 

Because gcd(|a|, |b|) = gcd(a , b),there is no harm in assuming that a ≥b > 0. 

The first step is to apply the Division 

Algorithm to a and b to get 

 

    a = q1b + r1   0 ≤r1<b 

If it happens that r1 = 0, then b | a and gcd(a, b) = b. When r1≠0, divide b by 

r1to produce integers q2and r2 satisfying 

    b= q2 r1+ r2   0 ≤r2< r1 

 

If r2 = 0, then we stop; otherwise, proceed as before to obtain 

    r1= q3 r2+ r3   0 ≤r3< r2 

 

This division process continues until some zero remainder appears, say, at 

the(n + l)th stage where rn-1 is divided by rn(a zero remainder occurs sooner 

orlater because the decreasingsequence b >r1> r2> · · · ≥ 0 cannot contain 

morethan b integers). 

The result is the following system of equations: 

a= q1b + r1   0 < r1<b 

b = q2r1 + r2   0 < r2< r1 

r1 = q3r2+ r3   0 <r3< r2 

   ⁞ 

rn-2 = qnrn-1 + rn  0 <rn<rn-1 

rn-1 = qn+1rn+ 0 

We argue that rn, the last nonzero remainder that appears in this manner, is 

equal togcd(a , b). Our proof is based on the lemma below. 
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Lemma  

If a >0 then gcd(a, 0) = a. 

Proof.Since every integer divides 0, C(a, 0) is just the set of divisors of a. 

Thelargest divisor of a is |a|. Since a is positive, |a| = a, and so gcd(a, 0) = 

a.  

The prior lemma reduces the problem of computing gcd(a, b) to the 

casewhere a ≥ b >0. 

Lemma  

If a >0 then gcd (a, a) = a. 

Proof. Obviously, a is a common divisor. By Lemma 1.3.5, gcd(a, a) ≤ |a| 

andsince a is positive, |a| = a. So a is the greatest common divisor.  

We have now reduced the problem to the case a > b >0. The central resultis 

next. 

Lemma  

Let a > b >0. If a = bq + r, then gcd(a, b) = gcd(b, r). 

Proof. It suffices to show that the two sets C(a, b) and C(b, r) are equal, 

becausethen they must have the same greatest member. To show that the sets 

are equalwe will show that they have the same members. 

First, suppose that d ∈ C(a, b), so that d | a and d | b. Note that r = a − bq. 

 

By Theorem 1.1.2(3) we have that d | r. Thus d | b and d | r, and so d ∈ C(b, 

r). 

We have shown that any member of C(a, b) is a member of C(b, r), that is, 

thatC(a, b) ⊆ C(b, r). 

For the other containment, assume that d ∈ C(b, r) so that d | b and d | 

r.Since a = bq + r, Theorem 1.1.2(3) applies again to shows that d | a. So d | 

a andd | b, and therefore d ∈ C(a, b).  
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The Euclidean Algorithm uses Lemma 2.1.3 to compute the greatest 

commondivisor of two numbers. Rather introduce a computer language in 

which to givealgorithm, we will illustrate it with an example. 

 

Example Compute gcd(803, 154). 

gcd(803, 154) = gcd(154, 33) since 803 = 154 · 5 + 33 

gcd(154, 33) = gcd(33, 22) since 154 = 33 · 4 + 22 

gcd(33, 22) = gcd(22, 11) since 33 = 22 · 1 + 11 

gcd(22, 11) = gcd(11, 0) since 22 = 11 · 1 + 0 

gcd(11, 0) = 11 

Hence gcd(803, 154) = 11. 

 

Remark This method is much faster than finding C(a, b) and can findgcd‘s 

of quite large numbers. 

Recall that Bezout‘s Lemma asserts that given a and b there exists 

twonumbers s and t such that gcd(a, b) = s·a+t·b. We can use Euclid‘s 

Algorithmto find s and t by tracing through the steps, in reverse. 

 

Example Express gcd(803, 154) as a linear combination of 803 and 154. 

11 = 33 + 22 · (−1) 

= 33 + (154 − 33 · 4) · (−1) = 154 · (−1) + 33 · 5 

= 154 · (−1) + (803 − 154 · 5) · 5 = 803 · 5 + 154 · (−26) 

Lemma 

If a= qb + r, then gcd (a, b)= gcd(b, r). 

 

Proof.If d = gcd (a, b), then the relations d |a and d |b together imply thatd 

|(a- qb), or d | r. Thus, d is a common divisor of both b and r. On the 

otherhand, if c is an arbitrary commondivisor of b and r, then c |(qb + r), 

wherec|a. This makes c , a common divisor of a and b, so that c ≤d. It now 

follows fromthe definition of gcd (b, r) that d = gcd(b, r). 
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Example: Let us see how the Euclidean Algorithm works in a concrete 

caseby calculating, say, gcd (12378, 3054). The appropriate applications of 

the DivisionAlgorithm produce the equations 

   12378 = 4. 3054 + 162 

   3054 = 18 . 162 + 138 

   162 = 1 . 138 + 24 

   138 = 5. 24 + 18 

   24 = 1. 18 + 6 

   18 = 3. 6+0 

The integer 6, is the greatest common divisor of 12378 and 3054: 

   6 = gcd (12378, 3054) 

To represent 6 as a linear combination of the integers 12378 and 3054, we 

start withthe next-to-last of the displayed equations and successively 

eliminate the remainders18, 24, 138, and 162: 

Thus, we have 

    6 = 24-18 

    = 24- (138- 5 . 24) 

    = 6. 24- 138 

    = 6(162- 138) - 138 

    = 6. 162 - 7. 138 

    = 6. 162- 7(3054- 18. 162) 

    = 132. 162- 7. 3054 

    = 132(12378 - 4. 3054)- 7. 3054 

    = 132. 12378 + (-535)3054 

   6 = gcd (12378, 3054) = 12378x + 3054y 

where x = 132 andy = -535. Note that this is not the only way to express the 

integer6 as a linear combination of 12378 and 3054; among other 

possibilities, we could addand subtract 3054 · 12378 to get 

6 = (132 + 3054)12378 + (-535- 12378)3054= 3186. 12378 + (-12913)3054 

2.1.1 Theorem  
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If k > 0, then gcd (ka, kb) = k gcd(a, b). 

Proof. If each of the equations appearing in the Euclidean Algorithm for a 

and b is multiplied by k, we obtain 

ak = q1(bk) + r1k    0 <r1k <bk 

bk = q2(r1k) + r2k    0 <r2k <r1k 

  ⁞ 

rn-2k = qn(rn-1k) + rnk  0 <rnk <rn-Ik 

rn-1k = qn+I(rnk) + 0 

We have applied the Euclidean Algorithm to the integers ak and bk, so 

thattheir greatest common divisor is the last nonzero remainder rnk; that is, 

   gcd(ka, kb) = rnk = k gcd(a, b) 

as stated in the theorem. 

Corollary 

For any integer k ≠0, gcd (ka, kb) = |k| gcd(a, b). 

Proof.It suffices to consider the case in which k < 0. Then -k = |k| > 0 and, 

byTheorem 2.1.5, 

gcd(ak, bk) = gcd(–ak, –bk) 

= gcd(a|k|, b|k|) 

= |k| gcd(a,b) 

 

Definition. The least common multiple of two nonzero integers a and b, 

denotedby lcm (a, b), is the positive integer m satisfying the following: 

(a) a|m and b |m. 

(b) If a |c and b |c, with c > 0, then m ≤ c. 

As an example, the positive common multiples of the integers -12 and 30 

are60, 120, 180, ... ; hence, lcm(-12, 30) = 60. 

It implies that: Given nonzero integers aand b, lcm(a, b) always exists and 

lcm(a, b)≤|ab|. 

2.1.2 Theorem 

For positive integers a and bgcd(a, b) lcm(a, b)= ab 
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Proof.To begin, put d = gcd(a, b) and write a = dr, b = ds for integers r and 

s. Ifm = abjd, then m =as = rb, the effect of which is to make m a (positive) 

commonmultiple of a and b. 

Now let c be any positive integer that is a common multiple of a and b; 

say,for definiteness,  

c = au = bv.  

There exist integers x and y satisfyingd =ax+ by.  

It results as 

 

 
 

  

  
 

        

  
 (

 

 
)   (

 

 
)        

 

     above equation, we can states that m|c, i.e.m ≤c. According to the 

definition of lcm, m = lcm(a, b); i.e. 

          
  

 
 

  

        
 

hence, proved 

 

2.1.8 Corollary 

For any choice of positive integers a and b, lcm(a, b) = ab if and only if 

gcd(a, b)= 1. 

 In thecase ofthree integers, a, b, c, not all zero, gcd(a, b, c) is defined to be 

the positive 

integer d having the following properties: 

(a) d is a divisor of each of a, b, c. 

(b) If e divides the integers a, b, c, then e≤d. 

 

Example: Find the greatest common divisor of x
4
 + x

3
− 4x

2
 + x + 5 and x

3
 + 

x
2
− 9x − 9. 

Solution. Using polynomial division, we find that 

 

  x
4
 + x

3
− 4x

2
 + x + 5 = (x

3
 + x

2
− 9x − 9)x + 5x

2
 + 10x + 5 . 

 

Next, we have to divide x
3
 + x

2
− 9x –9by 5x

2
 + 10x + 5. We find that 
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  x
3
 + x

2
− 9x − 9 = (5x

2
 + 10x + 5)(

 

 
 

 

 
) + (−8x − 8). 

Finally, we divide 5x
2
 + 10x + 5 by −8x − 8 and find that 

 

  5x
2
 + 10x + 5 = (−8x − 8)* 

 

 
     + 

 

This is the final non-zero remainder. However, remembering that the 

greatestcommon divisor of two polynomials must be monic, we get rid of 

the − 85 term anddetermine that  

  Gcd (x
4
 + x

3
− 4x

2
 + x + 5, x

3
 + x

2
− 9x − 9) = x + 1 

 

Example: What is the largest positive integer n suchthat n
3
+ 100 is divisible 

by n + 10? 

Solution. Letn
3
+ 100 = (n + 10) n

2
+ an + b+ c 

   = n
3
+ n

2
(10 + a) + n (b + 10a) + 10b + c. 

Equating coefficients yields 

   10 + a = 0 

   b + 10a = 0 

   10b + c = 100. 

Solving this system yields a = −10, b = 100, and c = −900. Therefore, by 

theEuclidean Algorithm, we get 

  n + 10 = gcd (n3 + 100, n + 10) = gcd(−900, n + 10) = 

gcd(900, n + 10) 

 

The maximum value for n is hence n = 890 . 

 

Example: The numbers in the sequence 101, 104, 109,116, . . . are of the 

form an = 100+n
2
, where n = 1,2, 3, . . . . For each n, let dn be the greatest 

common divisor of an and an+1. Find the maximum valueof dn as n ranges 

through the positive integers. 

Solution. Since dn = gcd (100 + n
2
, 100 + (n + 1)

2
), dn must divide the 

differencebetween these two, or  



Notes 

36 

dn | (100 + (n + 1)
2
) − (100 + n

2
) = 2n + 1.  

Therefore 

 dn = gcd(100 + n
2
, 100 + (n + 1)

2
) = gcd(n

2
+ 100, 2n + 1). 

Since 2n + 1 will always be odd, 2 will never be a common factor, hence we 

canmultiply n
2
+ 100 by 4 without affecting the greatest common divisor: 

dn = gcd(4n
2
+ 400, 2n + 1) = gcd 4n

2
+ 400 − (2n + 1)(2n − 1), 2n + 1 

 = gcd (401, 2n + 1) . 

Therefore, in order to maximize the value of dn, we set n = 200 to give a 

greatest common divisor of 401. 

 

Check Your Progress 1 

1. Explain Euclidean Algorithm? 

 

2. Define GCD & LCM. 

 

 

2.2 THE DIOPHANTINE EQUATION 
 

2.2.1 Definition 

Let P(x, y, ...) is a polynomial with integer coefficients in one or more 

variables. A Diophantine equation is an algebraic equation  

     P( x, y, z, ...) = 0  

for which integer solutions are sought. 

 For example 
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The problem to be solved is to determine whether or not a given 

Diophantine equation has solutions in the domain of integer numbers. 

 

2.2.2 Linear Diophantine Equations (LDE): 

Definition. A linear Diophantine equation (in two variables x and y) is an 

equation 

     ax + by = c 

 

with integer coefficients a, b, c ∊ to which we seek integer solutions. It is 

not obvious that all such equations solvable. For example, the equation 

      2x + 2y = 1 

 

Some linear Diophantine equations have finite number of solutions, for 

example 

      2x = 4 

 

and some have infinite number of solutions. 

 

2.2.3 Thereom  

The linear equation a, b, c ∊

     ax + by = c 

 

has an integer solution in x and y ∊⇔gcd (a, b) |c 

 

Proof: 

  gcd (a, b) | a ∧ gcd (a, b) |b ⇒ 

  gcd (a, b) |(xa + yb) ⇒ gcd (a, b) |c 

Given 
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  gcd (a, b) |c ⇒∃ z ∊,  c = gcd (a, b) z 

 

On the other hand 

  ∃ x1, y1∊,   gcd (a, b) = x1 a + y1 b 

Multiply this by z: 

 

z  gcd (a, b) = a  x1  z + b  y1 z 

 

c = a  x1 z + b  y1 z 

 

Then the pair x1 z and y1  z is the solution 

2.2. 4 How Do You Find A Particular Solution? 

    ax + by = c  

By extended Euclidean algorithm we find gcd and such n and m that 

    a n + b  m = gcd (a, b) 

Multiply this by c 

a n c + b m c = gcd (a, b) c 

 

Divide it by gcd 

 

 
   

        
  

   

        
   

Compare this with the original equation 

     ax + by = c 

 

It follows that a particular solution is 

 

 

   
   

        
     

   

        
 

 

Example: Find a particular solution of 
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56 x+ 72 y = 40 

Solution. Run the EEA to find GCD, n and m 

 

GCD ( 56, 72) = 8 = 4  56 + (-3)  72 

 

Then one of the solutions is 

 

   
    

 
     

       

 
 

 

     x0 = 20; y0 = - 15 

 

2.2.5 How Do You Find All Solutions? 

     ax + by = c 

 

By the extended Euclidean algorithm we find gcd and such n and m that 

 

gcd (a, b) = a n + b  m  

 

gcd (a, b) c = a n c + b m c  

Next we add and subtract a b k where ∀k ∊

gcd (a, b) c = a n c + b m c + a b k - a b k  

 

Collect terms with respect a and b 

 

a  (n c +b k)+b (m c – a k)  = gcd (a, b) c 

 

Divide this by gcda, b 
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It can be rewritten as 

since x0, y0 is a particular solution. 

Therefore, all integers solutions are in the form 

 

     
  

        
       

  

        
 

 

Example: Find all integer solutions of 

    56 x+ 72 y = 40 

 

Run the EEA to find GCD, n and m 

 

GCD( 56, 72) = 8 = 4  56 + (-3)  72 

All solutions are in the form 
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2.2.6 Positive Solutions Of LDE: 

In some applications it might required to find all positive solutions x, y . 

We take a general solution 

   
  

         
 

  

        
 

   
  

         
 

  

        
 

from which we get two inequalities 

     nc + bk > 0 

     mc – ak  > 0 

 

To find out how many positive solutions a given equation has let us consider 

two cases 

a. ax + by = c,   gcd (a, b) = 1,    a, b > 0 

b. ax – by = c,   gcd (a, b) = 1,    a, b > 0 

c.  

It follows that in the first case, the equation has a finite number of solutions 

 
  

   
   

  

   
 

In the second case, there is an infinite number of solutions 

 

   nc – |b| k   > 0 

   mc – |a| k   > 0 

 

Example: Determine the number of solutions in positive integers 

   4 x +7 y =117 

 

Solution: GCD (4, 7) =1 = 2  4 + ( -1) 7 

 

The number of solutions in positive integers can be determined from the 

system 

    n c +b k > 0 

mc -b k > 0 
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Which  for our equation transforms to 

            

               

This gives 

 
     

 
    

   

 
 

 

There 4 such k, namely k  =  – 33, –32, –31, –30. 

 

2.2.7 Ldes With Three Variables 

Consider 

   3 x + 6 y +5 z = 7 

  GCD (3, 6) (x+2 y) +5 z = 7 

 

Letw =x +2 y 

 

The equation becomes 

   3 w +5 z =7 

Its general solution is 

   w =2   7 +5 k 

   z = (–1) 7 – 3 k 

since 

GCD (3, 5) =1 = 2   3 + (–1)   5 

 

Next we find x and y 

x + 2 y = 14 +5 k 

 

Since GCD (1, 2)| (14 +5k), the equation is solvable and the solution is 

   x = 1  (14 +5k) +2  l 

y = 0  (14 +5k) – 1  l 

 

where l∊ is another parameter. Here are all triple-solutions 

 



Notes 

43 

   x = 5k + 2 l +14 

   y = – l 

   z = – 7 – 3 k 

wherek, l =0, 1, 2, ... 

 

Check Your Progress 2 

1. What is Diophantine equation? 

 

2. Explain Linear Diophantine equation with steps of finding a particular 

solution. 

 

 

2.3 SUMMARY 
 

Diophantine equations can be reduced modulo primes, and then occur in 

coding theory and cryprography. For example elliptic curve cryptography is 

based on doing calculations in finite field (also called Galois fields) for a 

diophantine equation of degree 3 in two variables.   

In mathematics diophantine equations are central objects in number theory 

as they express natural questions such as the ways to write a number as a 

sum of  cubes, but they naturally come up in all questions that can be 

reduced to questions involving discrete objects, e.g. in algebraic topology.  

 

2.4 KEYWORDS 
 

1. Algorithm:a process or set of rules to be followed in calculations or other 

problem-solving operations 

2. Linear Combination: is an expression constructed from a set of terms by 

multiplying each term by a constant and adding the results 
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3. Variables:A variable is a quantity that may change within the context of 

a mathematical problem or experiment. 

4. Equations: a statement that the values of two mathematical expressions 

are equal (indicated by the sign =). 

5. Algebraic equation -  statement of the equality of 

two expressions formulated by applying to a set of variables 

the algebraic operations, namely, addition, subtraction, multiplication, 

division, raising to a power, and extraction of a root. 

 

2.5 QUESTIONS FOR REVIEW 
 

1. Use the Euclidean Algorithm to obtain integers x andy satisfying the 

following: 

gcd(56, 72) = 56x + 72y. 

2. Assuming that gcd(a, b)= 1, prove the following: 

gcd(a + b, a- b)= 1 or 2 

3. Find all integer solutions of16 x+35 y = 50 

4. Find a particular solution of 25 x + 30 y = 70 

5. Find gcd(143, 227), gcd(306, 657), and gcd(272, 1479). 

 

2.6 SUGGESTED READINGS 
 

1. David M. Burton, Elementary Number Theory, University of 

New Hampshire. 

2. G.H. Hardy, and , E.M. Wrigh,. An Introduction to the Theory 

of Numbers (6th ed, Oxford University Press, (2008). 

3. W.W. Adams and L.J. Goldstein, Introduction to the Theory 

of Numbers, 3rd ed., Wiley Eastern, 1972. 

4. A. Baker, A Concise Introduction to the Theory of Numbers, 

Cambridge University Press, Cambridge, 1984. 

5. I. Niven and H.S. Zuckerman, An Introduction to the Theory 

of Numbers, 4th Ed., Wiley, New York, 1980. 
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6. T.M. Apostol, Introduction to Analytic number theory, UTM, 

Springer, (1976). 

7. J. W. S  Cassel, A. Frolich, Algebraic number theory, 

Cambridge. 

8. M Ram Murty, Problems in analytic number theory, springer. 

9. M Ram Murty and Jody Esmonde, Problems in algebraic 

number theory, springer. 

2.7 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. Write the Concept of Euclidean algorithm and supporting 3 Lemma‘s 

---2.1, 2.1.1,2.1.2,2.1.3 

2. Provide respective definition and conditions ---below 2.1.6 

3. [Provide definition with example 2.2.1] 

4. [Hint: Define Linear Diophantine equation and write the steps to find 

particular solution and all solution 2.2.2,  2.2.4 ] 
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UNIT 3: PRIMES 
 

STRUCTURE 

 
3.0 Objectives 

3.1 Prime Numbers 

    3.1.1 Definition 

    3.1.2 Theorem 

    3.1.3 Theorem (Euclid‘s Theorem)  

    3.1.4 Theorem  

3.2 The Fundamental Theorem 

3.2.1 Theorem (Fundamental Theorem of Arithmetic)  

      3.2.2 Lemma (Euclid‘s Lemma)  

      3.2.3 Lemma (Fundamental Theorem, Existence)  

      3.2.4 Lemma (Fundamental Theorem, Uniqueness)  

3.3 Solved Example 

3.4 Summary 

3.5 Keywords 

3.6 Questions for review 

3.7 Suggested Readings 

3.8 Answer to check your progress 

 

3.0 OBJECTIVE 
 

Understand the concept of Prime numbers and the fundamental theorem. 

 

3.1 PRIME NUMBERS 

3.1.1 Definition 

 An integer p ≥ 2 is prime if it has no positive divisors other than 1 and 

itself. An integer greater than or equal to 2 that is not prime is 

composite.Note that 1 is neither prime nor composite. 

Or 
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An integer p > 1 is called a prime number, or simply a prime, if itsonly 

positive divisors are 1 and p. An integer greater than 1 that is not a prime is 

termedcomposite. 

3.1.2 Theorem 

If pis a prime and pI ab, then p|a or p | b. 

Proof. If p|a, then we need go no further, so let us assume that p ∤ a. 

Becausethe only positive divisors of p are 1 and p itself, this implies that 

gcd(p , a) = 1.  

(Ingeneral, gcd(p, a)= p or gcd(p, a)= 1 according asp Ia or p l a.)  

Hence, citingEuclid's lemma, we get p | b. 

Corollary 

If p is a prime and p | a1a2 · · ·an, then p |ak for some k, where 1≤k ≤n. 

 

Proof. Let‘s proceed by induction on n, the number of factors. When n = 1, 

the statedconclusion obviously holds; whereas when n = 2, the result is the 

content of Theorem3.1.2. Assume, as the induction hypothesis, that n > 2 

and that whenever p divides aproduct ofless than n factors, it divides at least 

one ofthe factors. Now let p |a1a2 · · · an. 

 

From Theorem 3.1.2, either p|anor p| a1a2···an -1·If p|an, then we are through. 

Asregards the case where p | a1a2 · · · an -1, the induction hypothesis ensures 

that p |akfor some choice of k, with 1 ≤k ≤n - 1. In any event, p divides one 

of the integersa1, a2, ... , an. 

Corollary 

If p, q1, q2, ... , qn are all primes and p|q1q2 · · ·qn, then p = qk forsome k, 

where 1 ≤k ≤n. 

Proof. By virtue ofCorollary 1, we know that p | qk for some k, with 1 ≤k ≤ 
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n. Beinga prime, qkis not divisible by any positive integer other than 1 or 

qkitself. Becausep > 1, we are forced to conclude that p = qk. 

Lemma 

An integer n ≥ 2 is composite if and only if it has factors a andb such that 1 

< a < n and 1 < b < n. 

 

Proof. Let n ≥ 2. The ‗if‘ direction is obvious. For ‗only if‘, assume that n 

iscomposite. Then it has a positive integer factor a such that a ≠1, a ≠n. 

Thismeans that there is a b with n = ab. Since n and a are positive, so is b. 

Hence1 ≤ a and 1 ≤ b.  

As, a ≤ n and b ≤ n. Since a ≠1 and a ≠n wehave 1 < a < n. If b = 1 then a = 

n, which is not possible, so b ≠1. If b = nthen a = 1, which is also not 

possible. 

So 1 < b < n,finishing this half of theargument.  

Lemma  

If n >1 then there is a prime p such that p | n. 

 

Proof:Let S denote the set of all integers greater than 1 that have no 

primedivisor. We must show that S is empty.If S is not empty then by the 

Well-Ordering Property it has a smallest 

member; call it m. Now m >1 and has no prime divisor. Then m cannot 

beprime (as every number is a divisor of itself). Hence m is composite.  

 

Therefore, m = ab where 1 < a < m and 1 < b < m. Since 1 < a < m, 

thefactor a is not a member of S. So a must have a prime divisor p. Then p | 

aand a | m, so by Theorem 1.1. 2, p | m. This contradicts the assumption that 

mhas no prime divisor. So the set S must be empty.  

3.1.3 Theorem (Euclid’s Theorem)  
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There are infinitely many primes. 

Proof. Assume, to get a contradiction, that there are only a finitely 

manyprimes p1 = 2, p2 = 3, . . . , pn. Consider the number N = p1p2· · · pn + 1. 

Since p1≥ 2, clearly N ≥ 2. So by Lemma 1.4.3, N has a prime divisorp. That 

prime must be one of p1, . . . , pn since that list was assumed to beexhaustive. 

However, observe that the equation 

 

   N = pi(p1p2· · · pi−1pi+1· · · pn) + 1 

along with 0 ≤ 1 < pi shows by Lemma 1.2.2 that n is not divisible by pi. 

This isa contradiction; it follows that the assumption that there are only 

finitely manyprimes is not true.  

 

 Remark Eucild‘s Theorem, and its proof, is often cited as an example ofthe 

beauty ofMathematics. 

3.1.4 Theorem  

If n >1 is composite then n has a prime divisor p ≤√ . 

Proof. Let n >1 be composite. Then n = ab where 1 < a < n and 1 < b < n. 

We claim that at least one of a or b is less than or equal to√ .. For if not 

thena >√ .and b >√ ., and hence n = ab >√ .·√ .= n, which is impossible. 

 

Suppose, without loss of generality, that a ≤ √n. Since 1 < a, by Lemma 

1.4.3there is a prime p such that p | a. Hence, by Transitivity in Theorem 

1.1.2, sincea | n we have p | n. By Comparison in Theorem 1.1.2, since p | a 

we havep ≤ a ≤√ .  

 

We can use Theorem 1.4.5 to help compute whether an integer is prime. 

Givenn >1, we need only try to divide it by all primes p ≤ √n. If none of 

thesedivides n then n must be prime. 

 

Example Consider the number 97. Note that √97 < √100 = 10. Theprimes 

less than 10 are 2, 3, 5, and 7. None of these divides 97, and so 97 isprime. 
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Examples: 

1.Find all positive integers n such that n
2
+1 is divisible by n+1. 

Solution: There is only one such positive integer: n = 1. In fact, 

n
2
+1 = n(n+1) – (n-1);  

thus, if n+1| n
2
+1, then n+1|n-1 which for positive integer n is possible only 

if n-1 = 0, hence if n = 1. 

 

2.Prove that for positive integer n we have 169|3
3n+3

  –26n – 27. 

 

Solution: We shall prove the assertion by induction.  

We have 

   169|3
6
–26 – 27 = 676 = 4· 169. 

 

Next, we have 

  3
3(n+1)

 –26(n+1) – 27 – ( 3
3n+3

  –26n – 27) = 26(3
3n+3

  –1)  

 

However, 13|3
3
-1, hence 13|13 

3(n+1),
 and 169|26(3 

3n+3
-1). 

The proof by induction follows immediately. 

 

Check Your Progress 1 

1. Define Prime & state two examples 

 

2. Explain your understanding of , ‗There are infinite primes‘. 

 

 

3.2 THE FUNDAMENTAL THEOREM 

3.2.1 Theorem (Fundamental Theorem of Arithmetic)  
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Every numbergreater than 1 factors into a product of primes n = p1p2 · · · ps. 

Further, writing the primes in ascending order p1≤ p2≤ · · · ≤ psmakes the 

factorizationunique. 

Some of the primes in the product may be equal. For instance, 12 = 2·2·3 

=2
2
·3. So the Fundamental Theorem is sometimes stated as: every number 

greaterthan 1 can be factored uniquely as a product of powers of primes. 

 

Example 600 = 2 · 2 · 2 · 3 · 5 · 5 = 23 · 3 · 52 

We will break the proof of the Fundamental Theorem into a sequence 

ofLemmas. 

3.2.2 Lemma (Euclid’s Lemma)  

If p is a prime and p | ab, then p | a or p | b. 

Proof.Assume that p | ab. If p | a then we are done, so suppose that it 

doesnot.  

Let d = gcd(p, a). Note that d >0, and that d | p and d | a.  

Since d | pwe have that d = 1 or d = p. If d = p then p | a, which we assumed 

was not 

true. So we must have d = 1. Hence gcd(p, a) = 1 and p | ab.  

So by Bezout‘s Lemma,p | b.  

Lemma  

Let p be prime. Let a1, a2, . . . , an, n ≥ 1, be integers. If p |a1a2· · · an, then p | 

ai for at least one i ∈ {1, 2, . . . , n}. 

Proof.We use induction on n. For the n = 1 base case the result is clear. 

For the inductive step, assume the inductive hypothesis: that the lemmaholds 

for n such that 1 ≤ n ≤ k. We must show that it holds for n = k + 1. 

 

Assume that p is prime and that p | a1a2· · · akak+1. Write a1a2· · · akas a, 

andak+1 as b. Then p |a or p | b by Lemma 3.2.2. If p | a = a1 · · · akthen by 

theinduction hypothesis, p | ai for some i ∈ {1, . . . , k}. If p | b then p | ak+1. 
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Sowe can say that p | ai for some i ∈ {1, 2, . . . , k + 1}. This verifies the 

lemma forn = k + 1. Hence by mathematical induction, it holds for all n ≥ 1. 

3.2.3 Lemma (Fundamental Theorem, Existence)  

If n >1 then there existprimes p1, . . . , ps, where s ≥ 1, such that n = p1p2 · · · 

ps and p1≤ p2 ≤ · · · ≤ ps. 

 

Proof.We will use induction on n. The base step is n = 2: in this case, since2 

is prime we can take s = 1 and p1 = 2. 

For the inductive step, assume the hypothesis that the lemma holds for2 ≤ n 

≤ k; we will show that it holds for n = k + 1. If k + 1 is prime then s = 1and 

p1 = k + 1. If k + 1 is composite then write k + 1 = ab where 1 < a < k + 

1and 1 < b < k + 1.  

 

By the induction hypothesis there are primes p1, . . . , puandq1, . . . , qvsuch 

that a = p1· · · puand b = q1· · · qv. This gives that k + 1 is aproduct of primes 

    k + 1 = ab = p1p2· · · puq1q2· · · qv, 

 

where s = u + v. Reorder the primes into ascending order, if necessary. 

The base step and the inductive step together give us that the statement 

istrue for all n >1.  

3.2.4 Lemma (Fundamental Theorem, Uniqueness)  

If n = p1p2· · · psfors ≥ 1 with p1≤ p2≤ · · · ≤ ps, and also n = q1q2· · · qtfor t ≥ 1 

withq1≤ q2≤ · · · ≤ qt, then t = s, and pi= qifor all I between 1 and s. 

Proof.The proof is by induction on s. In the s = 1 base case, n = p1 is 

primeand we have p1 = q1q2· · · qt. Now, t must be 1 or else this is a 

factorization ofthe prime p1, and therefore p1 = q1. 

 

Now assume the inductive hypothesis that the result holds for all s with1 ≤ s 

≤ k. We must show that the result then holds for s = k + 1. 
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 Assume thatn = p1p2· · · pkpk+1 where p1≤ p2≤ · · · ≤ pk+1, and also n = q1q2 · · 

· qtwhere 

q1≤ q2≤ · · · ≤ qt.  

Clearly pk+1 | n, so pk+1 | q1· · · qt. Euclid‘s Lemma thengives that pk+1 divides 

some qi. That implies that pk+1 = qi, or else pk+1 wouldbe a non-1 divisor of 

the prime qi, which is impossible. Hence pk+1 = qi≤ qt. 

A similar argument shows that qt = pj ≤ pk+1. Therefore pk+1 = qt. 

To finish, cancel pk+1= qt from the two sides of this equation. 

   p1p2· · · pkpk+1= q1q2· · · qt−1qt 

Now the induction hypothesis applies: k = t − 1 and pi= qifor i = 1, . . . , t − 

1. 

So the lemma holds also in the s = k + 1 case, and so by 

mathematicalinduction it holds for all s ≥ 1. 

 

Remark Unique factorization gives an alternative, conceptually simpler,way 

to find the greatest common divisor of two numbers.  

For example: 600 =23 · 31 · 52 · 70 and 252 = 22 · 32 · 50 · 7.  

 

Now, 23 divides both number. So does31, but 32 does not divide both. Also, 

the highest power of 5 dividing bothnumbers is 50, and similarly the highest 

power of 7 that works for both is 70. 

So gcd(600, 252) = 22 · 31 · 50 · 70 = 24.  

 

In general, we can find the greatestcommon divisor of two numbers 

factoring, then taking the minimum power of2, times the minimum power of 

3, etc. 

 

Example: Given the polynomialwith integer coefficients  

 

with integer coefficients a1, a2, …, an and given that there exist four distinct 

integers a,b,c and d such thatf(a) = f(b) = f(c) = f(d) = 5, show that there is 

no integer k for which f(k)=8 
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Solution:Let             

 Then we must have 

                                 

 

for some h(x) ∊ {ℤ }[x]. Let k be such that f(k)=8, Then g(k)=3 and we get 

 

    3=k(x−a)(x−b)(x−c)(x−d)h(x). 

By the fundamental theorem of arithmetic, we can express 3 as a product of 

at most three different integers  (−1,−3,1). 

Since, (x−a),(x−b),(x−c) and x−d) are all distinct, this is an obvious 

contradiction. 

 

Check Your Progress 2 

1. Explain Fundamental Theorem Uniqueness 

 

2. Explain Fundamental Theorem Existence 

 

 

3.3 EXAMPLES 
 

1. Prove that for every integer k the numbers 2k+l and 9k+4 are relatively 

prime, and for numbers 2k-1and'9k+4 find their greatest common divisor as 

a function of k. 

 

Solution:Numbers 2k+l and 9k+4 are relatively prime since 9(2k+1)--

2(9k+4) = I.  

Since  

   9k+4 = 4(2k-1)+(k+8),  
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while     

   2k-1= 2(k+8)-17, 

 we have  

   (9k+4, 2k-1) = (2k-l, k+8) = (k+8, 17). 

 If k =9 

  (mod 17), then (k+8, 17) =17;  

 

in the contrary case, we have 17 | k+8, 

hence  

   (k+8, 17) = 1.  

 

Thus,    (9k+4, 2k-1) = 17  if k =9 (mod 17)  

and 

   (9k+4, 2k-1) = 1  if k ≢9 (mod 17). 

 

2. Prove that if a and b are different integers, then there exist infinitely many 

positive integers n such that a+n and b+n are relatively prime. 

 

Solution: Let a and b be two different integers.  

Assume for instance a <b, and let n = (b-a)k +1 – a.  

For k sufficiently large, n will be positive integer. 

We have 

  a+n = (b – a)k+1,  b+n = (b–a) (k+1)+1,  

hence a+n and b+n will be positive integers. 

 

 If we had d|a+n and d|b+n, we would have d|a – b, and, in view of d|a+n, 

also d|l, which implies that d = 1.  

Thus, 

   (a+n, b+n) = 1. 

 

3. Prove that the equation p
2
+q

2
= r

2
+s

2
+t

2 
has no solution with primes p, q, 

r, s, t. 
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Solutions: Note first thatifp, q,r, s, and t are primes and  

   q
2
+q

2 
= r

2
+s

2
+t

2
, 

then each of the numbers p and q must be different from each of the 

numbers r, s, and t. In fact, if we had, for instance, p = r then we would also 

have 

   q
2
= s

2
+t

2
 

which is impossible since this equation cannot have solutionin primes q, s, 

and t. Indeed, the numbers s and t could not be both odd norcould they be 

both even (since in this case we would have q = 2, which isimpossible in 

view of the fact that the right-hand side is > 4).  

 

If we had s = 2, then the number 4 would be a difference of two squares of 

positive 

integers which is impossible. 

If p
2
+q

2 
= r

2
+s

2
+t

2
, then it is not possible that all numbers p, q, r,s, tare odd. 

 

 If p is even, then p = 2, and the numbers q,r, s, t are odd.  

Sincethe square of an odd number gives the remainder 1 upon dividing by 

8,the left-hand side would give the remainder 5, and the right-hand side 

wouldgive the remainder 3, which is impossible. If both p and q are odd, 

thenthe left-hand side gives the remainder 2 upon dividing by 8, while on 

theright-hand side one (and only one) of the numbers must be even, for 

instance 

r = 2. Then, however, the right-hand side would give the remainder 6upon 

dividing by 8, which is impossible. 

 

4. Find all prime solutions p, q, r of the equation p(p+l)+q(q+l) = r(r+l). 

 

Solution : We present the solution found by A. Schinzel. There is only 

onesolution, namely 

    p = q = 2, r = 3.  

 

To see that, we shall find all solutionsof the equation  
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where p and q are primes andn is a positive integer.  

Our equation yields 

                                    

      

 

and we must have n >q.  

Since p is a prime, we have either p|n-q orp|n+q+1. If p|n-q, then we have 

p≤ n-q, whichimplies p(p+1)≤(n-q)(n-q+1), and therefore n+q+l ≤n-q+l, 

which is impossible. 

 

Thus we have p|n+q+ 1, which means that for some positive integer 

kn+q+1= kp, whichimplies p+1= k(n-q).     

 (1) 

 

If we had k = 1, then n+q+ 1 = p and p+ 1 = n-q, which gives p-q= n+ 1 

and p+q = n+ 1, which is impossible.  

Thus, k > 1. From (1) weeasily obtain 

                                 

                                                

Since k≥2, we have k+1 ≥3.  

The last equality, whose left-hand side haspositive integer divisors 1, 2, q, 

and 2q only, implies that either k+ 1 = qor k+1= 2q. If k+1= q, then (k – 

1)(n – q) = 3, hence (q – 2)(n – q) = 3. 

 

This leads to either q – 2 = 1, n – q= 3, that is q = 3, n = 6, k = q– 1 = 2,and, 

in view of (1), p = 5, or else, q–2 = 3, n – q = 1, which gives q = 5,n = 6, k = 

4, and in view of (I), p = 3. 

 

On the other hand, if k+l = 2q, then (k – 1)(n – k) = 2, hence2(q –1)(n – q) = 

2. This leads to q– 1 = 1 and n – q = 1, or q = 2, n = 3,and, in view of (I), p = 
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2. Thus, for positive integersn, we have thefollowing solutions in primes p 

and q: 

   1) p = q = 2, n = 3;  

   2) p = 5,q = 3, n = 6, and  

   3) p = 3, q = 5, n = 6.  

 

Only in the first solution allthree numbers are primes. 

 

5.  Find all primesp, q, and r such that the numbers p(p+l), q(q+l), r(r+ 1) 

form an increasingarithmetic progression. 

 

Solution: Such numbers are, for instance, p = 127, q = 3697, r = 5527. Itis 

easy to check (for instance, in the tables of prime numbers) that 

thesenumbers are primes, and that the numbers p(p+1), q(q+1), and 

r(r+1)form an arithmetic progression.  

 

We shall present a method of finding suchnumbers. 

From the identity 

                                             

it follows that for a positive integer n, the numbers 

                         and                 

form an arithmetic progression.  

If for some positive integer n the numbersn, 29n+14, and 41n+20 were all 

primes, we would have found a solution. 

Thus, we ought to take consecutive odd primes for n and check whether 

thenumbers 29n+14 and 41n+20 are primes. 

 

The least such number is n = 127 which leads to the above solution. 

We cannot claim, however, that in this manner we obtain all triplets 

ofprimes with the required properties. 

 

6.  Find all positive integers n such that each of the numbers n+1, n+3, n+7, 

n+9, n+13, andn+15 is a prime. 
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Solutions: There is only one such positive integer, namely n = 4.  

 

In fact, forn = 1, the number n+3 = 4 is composite;  

 

for n = 2, the number n+7 = 9is composite;  

 

for n = 3, the number n+l = 4 is composite; 

 

 and for n > 4,all our numbers exceed 5, and at least one of them is divisible 

by 5.  

 

Thelast property follows from the fact that the numbers 1, 3, 7, 9, 13, and 

15give upon dividing by 5 the remainders 1, 3, 2, 4, 3, and 0, hence all 

possibleremainders.  

 

Thus, the numbers n+1, n+3, n+7, n+9, n+13, and n+15give also all 

possible remainders upon dividing by 5; therefore at least oneof them is 

divisible by 5, and as > 5, is composite. On the other hand,for n = 4 we get 

the prime numbers 5,7,11,13,17, and 19. 

 

3.4 SUMMARY 
 

Every number a > 1 is eithera prime or, by the Fundamental Theorem, can 

be broken down into unique primefactors and no further, the primes serve as 

the building blocks from which all other 

integers can be made. Accordingly, the prime numbers have intrigued 

mathematicians through the ages, and although a number of remarkable 

theorems relating totheir distribution in the sequence of positive integers 

have been proved, even moreremarkable is what remains unproved. 

 

3.5 KEYWORDS 
 



Notes 

60 

1. Existence – it is a theorem with a prenex normal form involving 

the existential quantifier. 

2. Unqueness- indicate that exactly one object with a certain property 

exists. 

3. Fundamentals of Mathematics - is a work text that covers the 

traditional study in a modern prealgebra course, as well as the topics 

of estimation, elementary analytic geometry, and introductory 

algebra 

4. Arithmetic - is a branch of mathematics that consists of the study of 

numbers, especially the properties of the traditional operations on 

them—addition, subtraction, multiplication and division 

5. Composite -A composite number is a positive integer which is not 

prime. 

 

3.6 QUESTIONS FOR REVIEW 
 

1. Given that p is a prime and p | a
n
, prove that p

n
|a

n
. 

2. If   p ≥ q  ≥ 5 and p and q are both primes, prove that 24|p
2
– q

2
 

3. Prove that every integer> 6 can be represented as a sum of two 

integers > 1 which are relatively prime. 

4. Prove that for every positive integer m every even number 2k can be 

represented as a difference of two positive integers relatively prime 

to m. 

3.7 SUGGESTED READINGS 
 

1. David M. Burton, Elementary Number Theory, University of 

New Hampshire. 

2. G.H. Hardy, and , E.M. Wrigh,. An Introduction to the Theory 

of Numbers (6th ed, Oxford University Press, (2008). 

3. W.W. Adams and L.J. Goldstein, Introduction to the Theory 

of Numbers, 3rd ed., Wiley Eastern, 1972. 

4. A. Baker, A Concise Introduction to the Theory of Numbers, 

Cambridge University Press, Cambridge, 1984. 
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of Numbers, 4th Ed., Wiley, New York, 1980. 

6. T.M. Apostol, Introduction to Analytic number theory, UTM, 

Springer, (1976). 

7. J. W. S  Cassel, A. Frolich, Algebraic number theory, 

Cambridge. 

8. M Ram Murty, Problems in analytic number theory, springer. 

9. M Ram Murty and Jody Esmonde, Problems in algebraic 

number theory, springer. 

 

3.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. HINT: Provide definition of Prime and one theorem and discuss 1 

small example 3.1.1 

2. [HINT: Provide proof of this theorem statement—3.1.7] 

3. [HINT: Provide the statement of theorem with proof -- 3.2.4] 

4. [HINT: Provide the statement of theorem with proof-- 3.2.5] 
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UNIT 4: PRIME NUMBERS AND THEIR 

DISTRIBUTION -II 
 

STRUCTURE 

 

4.0 Objectives 

4.1 Concept Of Distribution Of Primes 

     4.1.1 Theorem  

     4.1.2 Theorem 

     4.1.3 Theorem Dirichlet 

     4.1.4 Theorem 

4.2 Wilson‘ Theorem 

       4.2.1 Theorem (Wilson‘s Theorem) 

       4.2.2 Definition  

4.3 The Prime Number Theorem 

4.4 Fermat Primes And Mersenne Primes 

4.4.1 Defiition 

     4.4.2 Theorem: Fermat's theorem 

     4.4.3 Definition  

     4.4.4 Theorem (The Lucas-Lehmer Mersenne Prime Test)  

4.5 Psuedoprimes 

     4.5.1 Theorem 

     4.5.2 Definition 

     4.5.3 Theorem 

4.6 Solved Examples 

4.7 Summary 

4.8 Keywords 

4.9 Questions for review 

4.10 Sugested Readings 

4.11 Answer to check your progress 

 

4.0 OBJECTIVES 
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Encode the concept of distribution of primes 

Understand the Wilson‘s and the Prime number Theorem 

Comprehend the concept of Fermat Primes and Mersenne Primes 

 

4.1 DISTRIBUTION OF PRIMES 
 

The Sieve of Eratosthenes is an ancient method to find primes. To find 

theprimes less than n, list the numbers from 2 to n− 1. The smallest number, 

2, isprime. Cross off all proper multiples of 2 (that is, the even numbers 

greater than2). The smallest number remaining, 3, is prime. Cross off all 

proper multiples of3, that is, 6, 9, etc. (some of them have already been 

eliminated). The smallestremaining number, 5, is prime. Cross off all proper 

multiples of 5. Continue 

this process until the list is exhausted.Here is what is left when the sieve 

filters out the nonprimes less than 100 

 

 

 

 

 

 

 

 

 

Obviously, the columns with even numbers and the columns with multiples 

of5 are empty (except for 2 and 5) but this is an artifact of the fact that the 

rowsof the table are 10 = 2 · 5 wide. Other than that, at first glance no 

pattern isapparent. 

4.1.1 Theorem  

If Pnis the nth prime number, then Pn.≤     
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Proof.Let us proceed by induction on n, the asserted inequality being clearly 

truewhen n = 1. As the hypothesis of the induction, we assume that n > 1 

and that theresult holds for all integersupton. Then 

pn+1≤p1p2…pn+1 

 

       ≤ 2. 2
2
 ...     

+ 1 =           
+ 1 

Recalling the identity 1+ 2 + 2
2
 + ···+ 2

n-1 
= 2

n
- 1, we obtain 

  pn+1≤     
+ 1 

However, 1 ≤     
 for all n; where 

pn+1≤     
 +     

 

= 2.     
=   

 

completing the induction step, and the argument. 

 

4.1.2 Corollary  

For n≥1, there are at least n + 1 primes less than   
 

Lemma 

The product of two or more integers of the form 4n + 1 is of the same form. 

 

Proof.It is sufficient to consider the product ofjust two integers. Let us take 

k = 4n + 1 

and k'= 4m + 1. Multiplying these together, we obtain 

  kk'= (4n + 1)(4m + 1) 

  = 16nm + 4n + 4m + 1 = 4(4nm + n +..m) + 1 

which is of the desired form. 

4.1.2 Theorem 

There are an infinite number of primes of the form 4n + 3. 
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Proof. In anticipation of a contradiction, let us assume that there exist only 

finitelymany primes of the form4n + 3; call them q1, q2 , … , qs. Consider 

the positive integer 

   N = 4q1,q2·· ·qs– 1 = 4(q1,q2·· ·qs– 1) + 3 

and let N = r1r2· · · rtbe its prime factorization. Because N is an odd integer, 

we haverk≠2 for all k, so that each rk is either of the form 4n + 1 or 4n + 3.  

 

By the lemma,the product of any number ofprimes of the form 4n + 1 is 

again an integer of this type. 

For N to take the form 4n + 3, as it clearly does, N must contain at least one 

primefactor riof the form 4n + 3. But ricannot be found among the listing q1, 

q2 , … , qsfor this would lead to the contradiction that ri |1. The only 

possible conclusion is thatthere are infinitely many primes of the form 4n + 

3. 

4.1.3 Theorem Dirichlet 

If a and bare relatively prime positive integers, then the 

arithmetic progressiona, a+ b, a + 2b, a+ 3b, ...contains infinitely many 

primes. 

Dirichlet's theorem tells us, for instance, that there are infinitely many 

primenumbers ending in 999, such as 1999, 100999, 1000999, ... for these 

appear in thearithmetic progression determined by 1000n + 999, where 

gcd(lOOO, 999) = 1. There is no arithmetic progression a, a+ b, a+ 2b, ... 

that consists solely ofprime numbers. To understand this,let a + nb = p, 

where p is a prime.  

If we putnk= n + kp fork= 1, 2, 3, ... then the nkth term in the progression is 

 

                                               

Because each term on the right-hand side is divisible by p, so is a+ nkb. In 

otherwords, the progression must contain infinitely many composite 

numbers. 
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4.1.4 Theorem 

If all the n > 2 terms of the arithmetic progression 

 

                                  

 

are prime numbers, then the common differenced is divisible by every prime 

q <n. 

Proof.Consider a prime number q <n and assume to the contrary that q | d. 

Weclaim that the first q terms of the progression 

 

                                   (1) 

 

will leave different remainders when divided by q.  

Otherwise there exist integers jand k, with 0 ≤j <k ≤q–1, such that the 

numbers p + jd and p + kd yield thesame remainder upon division by q. 

Then q divides their difference (k– j)d. Butgcd(q , d) = 1, and so Euclid's 

lemma leads to q |k - j, which is nonsense in light of 

the inequality k– j≤q–1. 

Because the q different remainders produced from Eq. (1) are drawn from 

theq integers 0, 1, ... , q–1, one of these remainders must be zero. This 

means thatq |p + td for some t satisfying 0 ≤t ≤q- 1. Because of the 

inequality q <n ≤p ≤p + td, we are forced to conclude that p + td is 

composite. (If p were lessthan n, one of the terms of the progression would 

be p + pd = p(1 +d).) With thiscontradiction, the proof that q | d is complete. 

 

4.2 WILSON’S THEOREM 

4.2.1 Theorem (Wilson’s Theorem) 

There are arbitrarily long gaps betweenprimes: for any positive integer n 

there is a sequence of n consecutive compositeintegers. 
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Proof.Given n ≥ 1, consider a = (n + 1)! + 2. We will show that all of 

thenumbers a, a + 1, . . . , a + (n − 1) are composite. 

 

Since n+1 ≥ 2, clearly 2 | (n+1)!. 

 Hence  

   2 | (n+1)!+2.  

Since (n+1)!+2 >2,we therefore have that a = (n + 1)! + 2 is composite.  

We will finish by showingthat the i-th number in the sequence, a + i where 0 

≤ i ≤ n − 1, is composite. 

Because 2 ≤ i + 2 ≤ n + 1, we have that (i + 2) | (n + 1)!. 

 Hence 

   i + 2 | a + i =(n+1)!+(i+2).  

 

Because a+i >i +2 >1, we have that a+i is composite.  

4.2.2 Definition  

For any positive real number x, the number of primes less thanor equal to x 

is π(x). 

For example, π (10) = 4. 

 

4.3 THE PRIME NUMBER THEOREM 
 

 

 

Here is a table of values of π(10
i
) and 10

i
/ ln(10

i
) for i = 2, . . . , 10 (the 

second set of values have been rounded to the nearest integer) 
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This table has been continued up to 1021, but mathematicians are still 

workingon finding the value of π(1022). Of course, computing the 

approximations areeasy, but finding the exact value of π(1022) is hard. 

 

4.4 FERMAT PRIMES AND MERSENNE 

PRIMES 
 

A formula that produces the primes would be nice. Historically, lacking such 

a formula, mathematicians have looked for formulas that at least produce 

only primes. In 1640 Fermat noted that the numbers in this list 

 

 

 

 

are all prime. He conjectured that Fnis always prime. Numbers of the 

form   
    are called Fermat numbers. 

Lemma  

Let a >1 and n >1. If a
n
+ 1 is prime then a is even and n = 2k for some k ≥ 

1. 

Proof.We first show that n is even. Suppose otherwise, and recall the 

wellknown factorization. 

 

  a
n
 − 1 = (a − 1)(a

n−1 
+ a

n−2 
+ · · · + a + 1) 

 

Replace a by −a. 

  (−a)
n 

− 1 = (−a − 1) (−a)
n−1

 + (−a)
n−2

 + · · · + (−a) + 1 

 

If the exponent n is odd then n − 1 is even, n − 2 is odd, etc. So we have 

 (−a)
n
= −a

n
, (−a)

n−1
 = a

n−1
, (−a)

n−2 
= −a

n−2
, etc.,  

 

and the factorizationbecomes 
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−(a
n
+ 1) = −(a + 1) (a

n−1 
− a

n−2 
+ · · · − a + 1) 

 

Then changing the sign of both sides gives 

   (a
n
+ 1) = (a + 1)(a

n−1 
− a

n−2 
+· · · − a + 1). 

 

 But with n ≥ 2, we have 1 < a + 1 < a
n
+ 1. This shows that if nis odd and a 

>1, then a
n
+ 1 is not prime. 

So n is even.  

Write n = 2s · t where t is odd. Then if a
n
+ 1 is prime wehave (   

)
t
+ 1 is 

prime.  

But by what we just showed this cannot be prime if tis odd and t ≥ 2.  

So we must have t = 1 and therefore n = 2s. 

Also, an + 1 prime implies that a is even since if a is odd then so is an,and 

in consequence an + 1 would be even. But the only even prime is 2, andwe 

are assuming that a >1 and so we have a ≥ 2, which implies that soa
n
+ 1 ≥ 3 

4.4.1 Defiition 

 A prime number of the form Fn = 2(2n) + 1, n ≥ 0, is a Fermatprime. 

Euler showed that Fermat number next on the table, F5 = 4, 294, 967, 297,is 

composite. 

As n increases, the Fn‘s increase in size very rapidly, and are not easy 

tocheck for primality. We know that Fn is composite for all n such that 5 ≤ n 

≤ 30,and a large number of other values of n including 382447 (the largest 

one thatI know).  

Many researchers now conjecture that Fn is composite for n ≥ 5. SoFermat‘s 

original thought that Fn is always prime is badly mistaken. 

Mathematicians have also looked for formulas that produce many 

primes.That is, we can guess that numbers of various special forms are 

disproportionately prime. One form that has historically been of interest is 

are the Mersennenumbers Mn= 2
n
 − 1. 
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All of the numbers on the second row are prime. Note that 2
4
− 1 is not 

prime, so this is not supposed to be a formula that gives only primes. 

Lemma  

Let a >1 and n >1. If a
n
 −1 is prime then a = 2 and n is prime. 

 

Proof. Consider again a
n 
− 1 = (a − 1)(a

n−1 
+ · · · + a + 1) Note that if a 

>2and n >1 then a − 1 >1 and a
n−1

 + · · · + a + 1 > a + 1 >3 so both factors 

aregreater then 1, and therefore a
n
 − 1 is not prime.  

Hence if a
n
 − 1 is prime thenwe must have a = 2. 

 

Now suppose 2
n
 − 1 is prime. We claim that n is prime. For, if not, thenn = 

st where 1 < s < n and 1 < t < n. Then 2
n
 − 1 = 2

st
 − 1 = (2

s
)
t
 − 1 isprime. 

But we just showed that if a
n
 − 1 isprime then we must have a = 2. Sowe 

must have 2
s
= 2, and hence s = 1 and t = n.  

Therefore n is not composite,that is, n is prime.  

Corollary  

If Mnis prime, then n is prime. 

 

Proof. This is immediate from Lemma 4.4.3. 

At first it was thought that Mp= 2
p
 − 1 is prime whenever p is prime. Butin 

1536, Hudalricus Regius showed that M11 = 2
11

− 1 = 2047 is not prime:2047 

= 23 · 89. 

4.4.2 Theorem: Fermat's Theorem 
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Let p be a prime and suppose that p ∤a. Thena
p – 1

=1 (mod p). 

Proof. We begin by considering the first    positive multiples of a; that 

is, theintegers 

    a, 2a, 3a, ... , (   )a 

 

None of these numbers is congruent modulo p to any other, nor is any 

congruent tozero. Indeed, if it happened that 

 

    ra ≡sa (mod p) 1 ≤r <s ≤    

 

then a could be canceled to give r = s (mod p), which is impossible. 

Therefore, theprevious set of integers must be congruent modulo p to 1, 2, 3, 

... ,   , taken insome order. Multiplying all these congruences together, 

we find that 

 a· 2a · 3a · · ·(    )a = 1 · 2 · 3 ···(    ) (mod p) 

 

where 

    a
p-1

(   )! =(    )! (mod p) 

Once (p - 1)! is canceled from both sides of the preceding congruence (this 

is possiblebecause since p ∤(p - 1)!), our line of reasoning culminates in the 

statement thata
p-1

≡ 1 (mod p), which is Fermat's theorem. 

This result can be stated in a slightly more general way in which the 

requirementthat p ∤a isdropped. 

Corollary. If pis a prime, then a
p
≡a (mod p) for any integer a. 

 

Proof. When p |a, the statement obviously holds; for, in this setting, a
p
≡0 

≡a(mod p). If p ∤ a, then according to Fermat's theorem, we have a
p-1

≡ 1 

(mod p).When this congruence ismultiplied by a, the conclusion a
p
≡a (mod 

p) follows.. If a= 1, the assertion is that 1
p
 =1 (mod p), which clearly is true, 

as is thecase a = 0. Assuming that the result holds for a, we must confirm its 

validity fora + 1. With reference to the binomial theorem, 
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where the coefficient  
   is given by 

 

 

 

Our argument hinges on the observation that  
   ≡ 0 (mod p) for 1 ≤k ≤p - 

1. To see this, note that 

 

 

by virtue of which p | k! or pI (f). But p | k! implies that p |j for some j 

satisfying1 ≤k ≤p - 1, an absurdity. Therefore, p I(f) or, converting to a 

congruence statement, 

 

 

 

The point we wish to make is that 

   (a+ 1)
p
 =a

p
+ 1 ≡a+ 1 (mod p) 

where the rightmost congruence uses our inductive assumption. Thus, the 

desiredconclusion holds for a + 1 and, in consequence, for all a ≥ 0. If a 

happens to bea negative integer, there is no problem: because a= r (mod p) 

for some r, where0 ≤r ≤p - 1, we get a
p
≡rP ≡r =a (mod p). 

 

Lemma. If p and q are distinct primes with aP =a (mod q) and aq =a (mod 

p),then aPq =a (mod pq). 

 

Proof.The last corollary tells us that (a
q
)
p 
≡a

q
(mod p), whereas a

q
≡a (mod 

p)holds byhypothesis. Combining these congruences, we obtain a
pq

= a (mod 

p) or, indifferent terms, p |a
pq

 -a. In an entirely similar manner, q | a
pq

 -a 
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Hence,  

 a
pq

≡a (mod pq). 

4.4.3 Definition  

A prime number of the form Mn = 2
n
−1, n ≥ 2, is a Mersenneprime. 

People continue to work on determining which Mp‘s are prime. To 

date(2003-Dec-09), we know that 2p − 1 is prime if p is one of the following 

40primes: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 

2281,3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 

86243, 110503,132049, 216091, 756839, 859433, 1257787, 1398269, 

2976221, 3021377, 6972593,13466917, and 20996011. 

The first number with more than a thousand digits known to be prime 

wasM4253. The largest number on that list was found on 2003-Nov-17. This 

numberhas 6, 320, 430 digits. It was found as part of the Great Internet 

Mersenne PrimeSearch (GIMPS).  

One reason that we know so much about Mersenne primes is that the 

following test makes it easier to check whether or not Mpis prime when p is 

a largeprime. 

4.4.4 Theorem (The Lucas-Lehmer Mersenne Prime 

Test)  

Let p be anodd prime. Define the sequence r1, r2, r3, . . . , rp−1 by the rules r1 

= 4, and fork ≥ 2, 

   rk = (    
   ) mod Mp. 

 

Then Mpis prime if and only if rp−1 = 0. 

 

 

Example Let p = 5. Then Mp = M5 = 31. 

r1 = 4 

r2 = (42 − 2) mod 31 = 14 mod 31 = 14 
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r3 = (142 − 2) mod 31 = 194 mod 31 = 8 

r4 = (82 − 2) mod 31 = 62 mod 31 = 0 

Hence by the Lucas-Lehmer test, M5 = 31 is prime. 

 

Remark Note that the Lucas-Lehmer test for Mp= 2
p
 −1 takes only 

p−1steps. On the other hand, if we try to prove that Mpis prime by testing 

allprimes less than or equal to√  then must consider about 2
(p/2)

 steps. 

Thisis much larger, in general, than p.No one knows whether there are 

infinitely many Mersenne primes. 

Check Your Progress 1 

1. Explain Wilson‘s theorem 

 

2. Define  

a. Fermat‘s Prime 

b. Mersenne Prime 

 

 

4.5 PSUEDOPRIMES 
 

A pseudoprime number is a probable prime number that might actually be a 

composite number rather than an actual prime. Pseudoprimes are useful in 

public key cryptography and other aspects of IT. There are infinitely many 

pseudoprimes, the smallestfour being 341, 561, 645, and 1105. 

4.5.1 Theorem 

If n is an odd pseudoprime, then            is a larger one. 
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Proof.Because n is a composite number, we can write n = rs, with 1 <r ≤s 

<n. So, 

         ,or equivalently       making M
n
composite. By our 

hypotheses, 2n = 2 (mod n); hence2n - 2 = kn for some integer k. It follows 

that 

         
     

 

This  yields 

            

 

                               

                            

            

 

Therefore,         (mod Mn), in light ofwhich Mn is a pseudoprime. 

 

More generally, a composite integer n for which a
n 
≡a (mod n) is called 

apseudoprime to the base a. (When a = 2, n is simply said to be a 

pseudoprime.) 

4.5.2 Definition 

There exist composite numbers n that are pseudoprimes to every base a; that 

is, 

an =a (mod n) for all integers a. The least such is 561. These exceptional 

numbersare called absolute pseudoprimes or Carmichael numbers 

 

Example: Check that 561 = 3 · 11 · 17 must be an absolute pseudoprime,  

 

Solution: gcd(a, 561) = 1 gives 

gcd(a, 3) = gcd(a, 11) = gcd(a, 17) = 1 

An application of Fermat's theorem leads to the congruences 
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a
2
≡1 (mod 3) a

10
≡ 1 (mod 11) a

16
≡ 1 (mod 17) 

and, in tum, to 

a
560 

≡ (a
2
)
280

≡ 1 (mod 3) 

a
560 

≡ (a
10

)
56

≡ 1 (mod 11) 

a
560 

≡  (a
16

)
35

≡  1 (mod 17) 

Thesegiverisetothesinglecongruencea
560 

≡  1(mod561), wheregcd(a, 561) = 

1. 

But then a
561

=a (mod 561) for all a, showing 561 to be an absolute 

pseudoprime. 

4.5.3 Theorem 

Let n be a composite square-free integer, say, n = p
1
,p

2
, …, p

r
where 

the pi are distinct primes. If pi – 1 | n - 1 for i = 1, 2, ... , r, then n is an 

absolutepseudoprime. 

 

Proof.Suppose that a is an integer satisfying gcd(a, n) = 1, so that gcd(a, 

pi)= 1 

for each i. Then Fermat's theorem yields    
      . From the divisibility 

hypothesis pi– 1|n- 1, we have    
     ., and therefore    

   ., for all 

a andi = 1, 2, ... , r.  

As a result, we end up with n | a
n
 -a,which makes n an absolute 

pseudoprime. 

 

Examples of integers that satisfy the conditions of Theorem 4.5.1 are 

1729 = 7. 13. 19 6601 = 7. 23 . 41 10585 = 5 . 29 . 73 

 

Check Your Progress 2 

1. Explain Pseudoprime with example 
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2. Define Absolute pseudoprime 

 

 

 

 

4.6 SOLVED EXAMPLES 
 

1. A concrete example should help to clarify the proofofWilson's theorem. 

Specifically, let us take p = 13. It is possible to divide the integers 2, 3, 

... , 11 into 

(p- 3)/2 = 5 pairs, each product of which is congruent to 1 modulo 13. To 

write 

these congruences out explicitly: 

Solution :  2· 7≡1 (mod 13) 

3 · 9 ≡ 1 (mod 13) 

4 · 10 ≡ 1 (mod 13) 

5 · 8 ≡1 (mod 13) 

6 · 11≡1 (mod 13) 

Multiplying these congruences gives the result 

   11! = (2 · 7)(3 · 9)(4 · 10)(5 · 8)(6 · 11) ≡1 (mod 13) 

and so 

    12!≡12 ≡  – 1 (mod 13) 

Thus, (p- 1)! ≡ – 1  (mod p), with p = 13. 

 

Example :Let n = 12499 be the integer to be factored. The first square just 

larger than n is 112
2
= 12544.  

So we begin by considering the sequence of numbers x
2
 – n for x = 112, 113, 

.... As before, our interest is in obtaining a set of values x1,x2 , …, xkfor 

which the product (xi - n) · · ·(xk- n) is a square, say y
 2
. 

Then(x1 …xk)
2
≡y

 2
 (mod n), which might lead to a nontrivial factor of n. 
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A short search reveals that 

112
2
 - 12499 = 45 

117
2
 - 12499 = 1190 

121
 2
 - 12499 = 2142 

 

or, written as congruences, 

112
2
≡ 3

2
. 5 (mod 12499) 

117
2
≡  2. 5. 7 · 17 (mod 12499) 

1212 ≡ 2. 32 • 7 · 17 (mod 12499) 

 

Multiplying these together results in the congruence  

(112 · 117 · 121)
2
≡ (2 · 3

2
 · 5 ·7 · 17)

2
 (mod 12499) that is, 

 

1585584
2
≡ 107102 (mod 12499) 

 

But we are unlucky with this square combination. Because 

1585584 ≡10710 (mod 12499) only a trivial divisor of 12499 will be found.  

To be specific, 

  gcd (1585584 + 10710, 12499) = 1 

  gcd (1585584- 10710, 12499) = 12499 

after further calculation, we notice that 

  1132 ≡ 2 · 5 · 33 (mod 12499) 

  1272 ≡2. 3 · 5 · 11
2
 (mod 12499) 

which gives rise to the congruence 

(113 · 127)
2
 = (2 · 3

2
 · 5 · 11)

2
 (mod 12499) 

This reduces modulo 12499 to 

  1852
2
 = 990

2
 (mod 12499) 

and fortunately 1852 ≠± 990 (mod 12499).  

Calculating 

gcd (1852- 990, 12499) = gcd(862, 12499) = 431 

produces the factorization 12499 = 29 ·431. 
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4.7 SUMMARY 
 

Wilson's theorem implies that there exists an infinitude of composite 

numbers of the form n! + 1. Fermat‘s methodrepresented the first real 

improvement over the classical method of attempting to find a factorofn by 

dividing by all primes not exceeding√ . Fermat's factorization scheme has 

at its heart the observation that the search for factors of an odd integer n 

 

4. 8 KEYWORDS 
 

1. Arithmetic Progression: a sequence of numbers in which each differs 

from the preceding one by a constant quantity 

 

 2. Proof by contradiction:  (also known as indirect proof or the method 

of reductio ad absurdum) is a common proof technique that is based on a 

very simple principle: something that leads to a contradiction can not be 

true, and if so, the opposite must be true. 

 

3. Factorisation is the opposite process of expanding brackets. 

 

4. yields –produce or provide  

 

5. Composite - A whole number that can be made by multiplying other 

whole numbers 

 

4.9 QUESTIONS FOR REVIEW 
 

1. Find all pairs of primes p and q satisfying p- q = 3. 

2. Determine whether 17 is a prime by deciding whether 16! = -1 (mod 

17). 

3. Factor the number 2
11

 - 1 by Fermat's factorization method. 
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4.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. [HINT: Provide the statement and proof -- 4.2] 

2. [HINT: Provide definitation, representation and example-- 4.5] 

3. [HINT: Provide definition and example—4.5] 

4. [HINT: Provide definition and example—4.5.2] 
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            5.3.2 Theorem  

5.4 Solved Examples 
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5.6 Keywords 

5.7 Questions for review 

5.8 Suggested Readings 

5.9 Answer to check your progress 
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5.0 OBJECTIVE 
 

Understand the concept of Congruence  

Comprehend its basic and extra properties that has wide application 

 

5.1 INTRODUCTION 
 

If n is a positive integer, we say the 

integers a and b are congruent modulo n, and write a≡b(modn), if they have 

the same remainder on division by nn. (By remainder, of course, we mean 

the unique number rr defined by the Division Algorithm.) This notation, and 

much of the elementary theory of congruence, is due to the famous German 

mathematician, Carl Friedrich Gauss—certainly the outstanding 

mathematician of his time, and perhaps the greatest mathematician of all 

time. 

 

5.2 CONCEPT OF CONGRUENCE 

5.2.1 Definition  

Let m ≥ 0. We we say that the numbers a and b are congruentmodulo m, 

denoted a ≡ b (mod m), if a and b leave the same remainder whendivided by 

m. The number m is the modulus of the congruence. The notationa ≢b (mod 

m) means that they are not congruent. 

OR 

Let n be a fixed positive integer. Two integers a and b are said to 

becongruent modulo n,symbolized by 

    a≡ b (modn) 

if n divides the difference a - b; that is, provided that a - b = kn for some 

integer k. 

Whenn ∤(a- b), we say that a is incongruent to b modulo n, and it is 

represented asa ≢ b (mod n). 
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5.1.2 Theorem 

For arbitrary integers a and b, a≡ b (mod n) if and only if a and bleave the 

same nonnegative remainder when divided by n. 

Proof. First take a ≡b (mod n), so that a = b + kn for some integer k. Upon 

divisionby n, b leaves a certain remainder r; that is, b = qn + r, where 0 ≤r 

<n. Therefore, 

     

   a= b + kn = (qn + r) + kn = (q + k)n + r 

 

which indicates that a has the same remainder as b. 

On the other hand, suppose we can write a = q1n + r and b = q2n + r, with 

thesame remainder r (0 ≤r <n). Then 

   a- b = (q1n +r )- (q2n + r) = (q1- q2)n 

whence n | a- b. In the language of congruences, we have a≡b (mod n). 

Lemma  

The numbers a and b are congruent modulo m if and only ifm | (a − b), and 

also if and only if m | (b − a). 

Proof.Write a = mqa+ ra and b = mqb+ rb for some qa, qb, ra, and rb, with0 ≤ 

ra, rb< m. Subtracting gives a − b = m(qa − qb) + (ra − rb). Observe thatthe 

restrictions on the remainders imply that −m < ra − rb< m, and so ra– rbis 

not a multiple of m unless ra − rb= 0. 

 

If a and b are congruent modulo m then ra= rb, which implies that a − b 

=m(qa − qb) which in turn gives that a − b is a multiple of m. 

The implications in the prior paragraph reverse: if a − b is a multiple of 

mthen in the equation a−b = m(qa − qb) + (ra − rb). we must have that ra − 

rb= 0by the observation in the first paragraph, and therefore ra = rb.The b − a 

statement is proved similarly.  

 

Examples 
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1. 25 ≡ 1 (mod 4) since 4 | 24 

2. 25 ≢2 (mod 4) since 4 ∤ 23 

3. 1 ≡ −3 (mod 4) since 4 | 4 

4. a ≡ b (mod 1) for all a, b 

5. a ≡ b (mod 0) ⇔ a = b for all a, b 

 

a mod b ≡r where r is the remainder when a is divided by b. The two are 

related but not identitical. 

 

Example:One difference between the two is that 25 ≡ 5 (mod 4) is 

truewhile 25 = 5 mod 4 is false (it asserts that 25 = 1). 

The ‗mod‘ in a ≡ b (mod m) defines a binary relation, a relationship 

betweentwo things. The ‗mod‘ in a mod b is a binary operation, just as 

addition ormultiplication are binary operations. Thus,a ≡ b (mod m) ⇐⇒ a 

mod m = b mod m. 

That is, if m >0 and a ≡ r (mod m) where 0 ≤ r < m then a mod m = r. 

Expressions such as 

    x = 2 

    4
2
 = 16 

   x
2
 + 2x = sin(x) + 3 

are equations. By analogy, expressions such as 

    x ≡ 2 (mod 16) 

    25 ≡ 5 (mod 5) 

    x
3
 + 2x ≡ 6x

2
 + 3 (mod 27) 

are called congruences. 

The next two theorems show that congruences and equations share 

manyproperties. 

5.1.4 Theorem 

Congruence is an equivalence relation: for all a, b, c, andm >0 we have 

(1) (Reflexivity property) a ≡ a (mod m) 

(2) (Symmetry property) a ≡ b (mod m) ⇒ b ≡ a (mod m) 
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(3) (Transitivity property) a ≡ b (mod m) and b ≡ c (mod m) ⇒ a ≡ c(mod 

m) 

 

Proof.For reflexivity: on division by m, any number leaves the same 

remainderas itself. 

For symmetry, if a leaves the same remainder as b, then b leaves the 

sameremainder as a. 

For transitivity, assume that a leaves the same remainder as b on divisionby 

m, and that b leaves the same remainder as c.  

The all three leave thesame remainder as each other, and in particular a 

leaves the same remainder asc. 

 

Below we will consider polynomials 

f(x) = anx
n
+an−1x

n−1 
+· · ·+a1x+a0. 

We will assume that the coefficients an, . . . , a0 are integers and that x 

alsorepresents an integer variable. Here the degree of the polynomial is an 

integern ≥ 0. 

5.2.5 Theorem  

If a ≡ b (mod m) and c ≡ d (mod m), then 

(1) a + c ≡ b + d (mod m) and a − c ≡ b − d (mod m) 

(2) ac ≡ bd (mod m) 

(3) an ≡ bn (mod m) for all n ≥ 1 

(4) f(a) ≡ f(b) (mod m) for all polynomials f(x) with integer coefficients. 

 

Proof of (1).Since a − c = a + (−c), it suffices to prove only the addition 

case. 

By assumption 

   m | a − b and m | c − d.  

By linearity of the ‗divides‘ relation, 

  m | (a − b) + (c − d),  

that is m | (a + c) − (b + d).  
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Hence 

  a + c ≡ b + d(mod m). qed 

 

Proof of (2).Since m | a − b and m | c − d, by linearity m | c(a − b) + b(c − 

d). 

Now,  

   c(a − b) + b(c − d) = ca − bd,  

hence  

   m | ca − bd, and so ca ≡ bd (mod m), 

as desired.  

 

Proof of (3).We prove this by induction on n. If n = 1, the result is true bythe 

assumption that a ≡ b (mod m). Assume that the result holds for n =1, . . . , 

k. Then we have  

  a
k
 ≡ b

k
(mod m).  

This, together with a ≡ b (mod m)using property (2) above, gives that  

   aa
k
 ≡ bb

k
(mod m).  

Hence  

   a
k+1 

≡ b
k+1

(mod m)  

and the result holds in the n = k + 1 case. So the result holds for alln ≥ 1, by 

induction.  

 

Proof of (4).Let f(x) = cnx
n
+ · · · + c1x + c0.  

We prove by induction onthe degree of the polynomial n that if a ≡ b (mod 

m) then  

   cna
n
+ · · · + c0 ≡cnb

n
+ · · · + c0 (mod m).  

 

For the degree n = 0 base case, by the reflexivity ofcongruence we have that 

c0≡ c0 (mod m). 

For the induction assume that the result holds for n = k. Then we have 

( )    cka
k
+ · · · + c1a + c0≡ ckbk+ · · · + c1b + c0 (mod m). 
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By item (3) above we have a
k+1 

≡ b
k+1 

(mod m). Since ck+1 ≡ ck+1 (mod m), 

using item (2) above we have 

 

(  )    ck+1a
k+1

≡ ck+1 b
k+1 

(mod m). 

 

Now  

ck+1 a
k+1

+ cka
k 
+ · · · + c0≡ ck+1 b

k+1 
+ ckb

k
+ · · · + c0 (mod m). 

 

So by induction the result holds for all n ≥ 0.  

 

Example (From [1].) The first five Fermat numbers 3, 5, 17, 257, and65, 

537 are prime.  

We will use congruences to show that F5 = 2
32

 +1 is divisibleby 641 and is 

therefore not prime. 

Everyone knows that 2
2
 = 4, 2

4 
= 16, and 2

8
 = 256.  

Also, 2
16

 = (2
8
)
2
 =256

2
 = 65, 536.  

A straightforward division shows that  

  65, 536 ≡ 154 (mod 641). 

 

Next, for 232, we have that  

  (216)
2
≡ (154)

2
 (mod 641).  

That is, 2
32

≡23, 716 (mod 641).  

Since an easy division finds that 23,  

716 ≡ 640 (mod 641), 

and 640 ≡ −1 (mod 641),  

we have that 2
32

≡ −1 (mod 641).  

Hence  

 2
32

 +1 ≡ 0(mod 641), and  

so  

641 | 2
32

 + 1, as claimed.  

Clearly 2
32

 + 1 ≠641, so 2
32 

+ 1is composite. 

The work done here did not require us to find the value of 2
32

 + 1 =4, 294, 
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967, 297 and divide it by 641; instead the calculations were with 

muchsmaller numbers. 

 

Example: Compute the least positive residue mod 7 of 2 
37

. We compute 

powers, 2
2
≡ 4 

2
4
≡ 4

2
≡ 2 

2
8
≡ 2

2
≡ 4 

2
16

≡4
2
≡ 2 

2
32

≡2
2
≡ 4 

Thus 2 
37

= 2
32

·2
4
· 2

1
= 4 · 2 · 2 ≡ 2 mod 7. 

5.1.6 Theorem 

If ca =cb (mod n), then a= b (mod n/d), where d = gcd(c, n). 

 

Proof.By hypothesis, we can write 

    c(a - b) = ca - cb = kn 

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime 

integersr and s satisfying c = dr, n = ds. When these values are substituted in 

the displayedequation and the common factor d canceled, the net result is 

     r(a-b)=ks 

Hence, s | r(a- b) and gcd(r, s) = 1. Euclid's lemma yields s | a- b, which may 

berecast as a= b (mods); in other words, a≡ b (mod n/d). 

 

Theorem 5.1.6 gets its maximum force when the requirement that gcd(c, n) 

= 1isadded, for then the cancellation may be accomplished without a change 

in modulus. 

 

Corollary 1. If ca = cb (mod n) and gcd(c, n) = 1, then a= b (mod n). 

 

Corollary 2. If ca = cb (mod p) and p | c, where p is a prime number, 

thena≡ b (mod p). 

Proof.The conditions p |c and p a prime imply that gcd(c, p) = 1. 
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Check Your Progress 1 

1. Explain the concept of congruence. 

 

 

2. State any 4 properties of congruence 

 

 

 

5.3 MORE PROPERTIES OF 

CONGRUENCES 

5.3.1 Definition  

Let a be an integer. The set a = {x ∈ Z | x ≡ a (mod m)} of all integers that 

are congruent modulo m to a is called a residue class, or congruence class, 

modulo m.  

 

Since the congruence relation is an equivalence relation, it follows that all 

numbers belonging to the same residue class are mutually congruent, that 

numbers belonging to different residue classes are incongruent, that given 

two integers a and b either a = b or a ∩ b = ∅, and that a = b if and only if a 

≡ b (mod m).  

5.2.2 Proposition 

There are exactly m distinct residue classes modulo m, 

viz. ̅  ̅  ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅   
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Proof. According to the division algorithm, there is for each integer a a 

unique integer rbelonging to the interval [0, m − 1] such that a ≡ r (mod m). 

Thus, each residue class a isidentical with one of the residue 

classes ̅  ̅  ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅ , and these are different since i ≢j (mod m) if 0 ≤ i 

< j ≤ m − 1.  

5.2.3 Definition 

Chose a number xi from each residue class modulo m. The resulting set of 

numbers x1, x2, . . . , xm is called a complete residue system modulo m. The 

set {0, 1, 2, . . . , m−1} is an example of a complete residue system modulo 

m. Example 2 {4, −7, 14, 7} is a complete residue system modulo 4.  

Lemma 

If x and y belong to the same residue class modulo m, then (x, m) = (y, m).  

Proof. If x ≡ y (mod m), then x = y + qm for some integer q, and it follows 

that (x, m) = (y, m).  

 

Two numbers a and b give rise to the same residue class modulo m, i.e. a = 

b, if and only if a ≡ b (mod m). The following definition is therefore 

consistent by virtue of Lemma 5.2.4  

5.2.4 Definition 

A residue class a modulo m is said to be relatively prime to m if (a, m) = 1.  

5.2.5 Definition 

Let φ(m) denote the number of residue classes modulo m that are relatively 

prime to m. The function φ is called Euler‘s φ-function. Any set {r1, r2, . . . , 

rφ(m)} of integers obtained by choosing one integer from each of the residue 

classes that are relatively prime to m, is called a reduced residue system 

modulo m. 
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The following two observations are immediate consequences of the 

definitions: The number φ(m) equals the number of integers in the interval 

[0, m − 1] that are relatively prime to m. {y1, y2, . . . , yφ(m)} is a reduced 

residue system modulo m if and only if the numbers are pairwise 

incongruent modulo m and (yi , m) = 1 for all i.  

 

Example: The positive integers less than 8 that are relatively prime to 8 are 

1, 3, 5, and 7. It follows that φ(8) = 4 and that {1, 3, 5, 7} is a reduced 

residue system modulo 8.  

 

Example:If p is a prime, then the numbers 1, 2, . . . , p − 1 are all relatively 

prime to p. It follows that φ(p) = p − 1 and that {1, 2, . . . , p − 1} is a 

reduced residue system modulo p. 

5.2.6 Theorem 

Let (a, m) = 1. Let {r1, r2, . . . , rm} be a complete residue system, and let 

{s1, s2, . . . , sφ(m)} be a reduced residue system modulo m. Then {ar1, ar2, 

. . . , arm} is a complete and {as1, as2, . . . , asφ(m)} is a reduced residue 

system modulo m. Proof. In order to show that the set {ar1, ar2, . . . , arm} is a 

complete residue system, we just have to check that the elements are chosen 

from distinct residue classes, i.e. that i 6= j ⇒ ari 6≡ arj (mod m). 

 

But by properties of congruence, ari ≡ arj (mod m) implies ri ≡ rj (mod m) 

and hence i = j. Since (si , m) = 1 and (a, m) = 1, we have (asi , m) = 1 for i 

= 1, 2, . . . , φ(m) Hence as1, as2, . . . , asφ(m) are φ(m) numbers belonging 

to residue classes that are relatively prime to m, and by the same argument 

as above they are chosen from distinct residue classes. It follows that they 

form a reduced residue system. 

5.2.7 Theorem 
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Let m ≥ 2. If a and m are relatively prime then there existsa unique integer 

a such that aa  ≡ 1 (mod m) and 0 < a < m. 

 

Proof. Assume that gcd(a, m) = 1. Bezout‘s Lemma applies to give an s andt 

such that  

    as + mt = 1.  

Hence as − 1 = m(−t), that is, m | as − 1 and so 

   as ≡ 1 (mod m).  

Accordingly, let a = s mod m so that 0 < a < m.  

Then 

   a  ≡ s (mod m) so aa  ≡ 1 (mod m). 

To show uniqueness, assume that ac ≡ 1 (mod m) and 0 < c < m.  

Then 

    ac ≡ aa (mod m).  

Multiply both sides of this congruence on the left by c anduse the fact that 

ca ≡ 1 (mod m) to obtain c ≡ a (mod m). Because both arein [0 .. m), it 

follows that c = a . qed 

We call a the inverse of a modulo m.  

 

Note that we do not denote a bya
−1

 here since we keep that symbol for the 

usual meaning of inverse. 

 

Remark The proof shows that Blankinship‘s Method will compute 

theinverse of a, when it exists. But for small m we may find a by trial and 

error. 

 

For example, take m = 15 and a = 2.  

We can check each possibility: 2 · 0 ≢1(mod 15),  

2· 1 ≢1 (mod 15), . . . ,  

2 · 8 ≡ 1 (mod 15).  

So we can take 2 = 8. 

Note that we may well have ca ≡ 1 mod m with c ≠a if c ≡ a  (mod 

m)and c > m or c <0.  
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For instance, 8 · 2 ≡ 1 mod 15 and also 23 · 2 ≡ 1 mod 15. 

So the inverse is unique only if we specify that 0 < a < m. 

The converse of Theorem 5.2.1 holds. 

5.2.8 Theorem  

Let m >0. If ab ≡ 1 (mod m) then both a and b are relativelyprime to m. 

Proof. If ab ≡ 1 (mod m), then m | ab − 1. So ab − 1 = mt for some t.  

Hence, 

ab + m(−t) = 1. 

The proof of Bezout‘s Lemma, Lemma 5.3, shows that gcd(a, m) is the 

smallest positive linear combination of a and m. The last paragraph shows 

thatthere is a combination that adds to 1. Since no combination can be 

positiveand smaller than 1, we have that gcd(a, m) = 1. The case of gcd(b, 

m) issimilar. 

Corollary  

A number a has an inverse modulo m if and only if a and mare relatively 

prime. 

 

5.2.11 Theorem (Cancellation)  

Let m >0. If gcd(c, m) = 1 then ca ≡ cb (mod m) ⇒ a ≡ b (mod m). 

Proof. If gcd(c, m) = 1 then it has an inverse c modulo m, such that c c ≡ 

1(mod m). 

 Since ca ≡ cb (mod m) by  Theorem 5 .1. 4 ,  

    c ca ≡ c cb (mod m). 

 But 

  c c ≡ 1 (mod m) so c ca ≡ a (mod m) and c cb ≡ b (mod m).  

By reflexivityand transitivity this yields a ≡ b (mod m).  

Although  in general we cannot cancel if gcd(c, m) >1, the next result 

issome consolation. 
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5.2.12 Theorem  

If c >0 and m >0 then a ≡ b (mod m) ⇔ ca ≡ cb (mod cm). 

 

Proof.The congruence a ≡ b (mod m) is true if and only if m | (a − b) holds, 

which in turn holds if and only if cm | (ca − cb).  

5.2.13 Theorem 

Fix m >0 and let d = gcd(c, m).  

Then ca ≡ cb (mod m) ⇒a ≡ b (mod m/d). 

 

Proof. Since d = gcd(c, m), the equations c = d(c/d) and m = d(m/d) 

involveintegers.  

Rewriting ca ≡ cb (mod m) gives 

 

 

 

By Theorem 5.2.5 we have 

 

 

 

Since d = gcd(c, m), we have that gcd(c/d, m/d) = 1 and so by 

cancellation,Theorem 5.2.4,  

a ≡ b (mod m/d).  

 

5.2.14 Theorem  

If m >0 and a ≡ b (mod m) then gcd(a, m) = gcd(b, m). 

 

Proof. Let da= gcd (m, a) and db = gcd(m, b). Since a ≡ b (mod m) we havea 

− b = mt for some t. Rewrite that as a = mt + b and note that db | m anddb | b, 

so db | a. Thus, dbis a common divisor of m and a, and so db ≤ da.  
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Asimilar argument gives that da ≤ db, and therefore db = da. 

 

Corollary  

Fix m >0. If a ≡ b (mod m) then a has an inverse modulom if and only if b 

does also. 

 

Check Your Progress 2 

1. What do you understand by residue class and complete residue 

system 

 

 

 

2. Explain reduced residue system with example 

 

 

 

5.3 LINEAR CONGRUENCE 
 

5.3.1 Definition 

The congruence  

(1)    ax ≡ b (mod m) 

 is equivalent to the equation 

(2)    ax − my = b  

where we of course only consider integral solutions x and y. We know from 

Theorem 3.1 that this equation is solvable if and only if d = (a, m) divides b, 

and if x0, y0 is a solution then the complete set of solution is given by 
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We get d pairwise incongruent x-values modulo m by taking n = 0, 1, . . . , 

d−1, and any solution x is congruent to one of these. This proves the 

following theorem. 

5.3.1 Theorem  

The congruence  

    ax ≡ b (mod m)  

 

is solvable if and only if (a, m) | b. If the congruence is solvable, then it has 

exactly (a, m) pairwise incongruent solutions modulo m. 

Corollary  

The congruene ax ≡ 1 (mod m) is solvable if and only if (a, m) = 1, and in 

this case any two solutions are congruent modulo m.  

Corollary  

 If (a, m) = 1, then the congruence ax ≡ b (mod m) is solvable for any b and 

any two solutions are congruent modulo m. 

 

In (1) we can replace the numbers a and b with congruent numbers in the 

interval [0, m − 1], or still better in the interval [−m/2, m/2]. Assuming this 

done, we can now write equation (2) as 

 

(1)    my ≡ −b (mod a)  

 

with a module a that is less than the module m in (1). If y = y0 solves (3), 

then 

 

 

is a solution to (1). 
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ExampleSolve the congruence  

(4)     296x ≡ 176 (mod 114).  

 

Solution: Since 2 divides the numbers 296, 176, and 114, we start by 

replacing (4) with the following equivalent congruence:  

(5)     148x ≡ 88 (mod 57).  

 

Now, reduce 148 and 88 modulo 57. Since 148 ≡ −23 and 88 ≡ −26, we can 

replace (5) with  

(6)      23x ≡ 26 (mod 57).  

 

Now we consider instead the congruence 57y ≡ −26 (mod 23), which of 

course is quivalent to  

(7)      11y ≡ −3 (mod 23).  

 

Again, replace this with the congruence 23z ≡ 3 (mod 11) which is at once 

reduced to z ≡ 3 (mod 11). 

Using this solution, we see that 

 

 

 

is a solution to (7) and that all solutions have the form y ≡ 6 (mod 23). It 

now follows that 

 

 

solves (6) and the equivalent congruence (4), and that all solutions are of the 

form x ≡ 16 (mod 57), which can of course also be written as x ≡ 16, 73 

(mod 114). 

 

5.4 SOLVED EXAMPLES 
 

Example: Solve the congruence x 
5
 ≡ 9 (mod 23).  
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Solution: First, let us note that 23 = 5 · 4 + 3. Therefore l = 4 andwe get x
2
 ≡ 

9 
−4

 (mod 43). Since 9
4
 ≡ 6 (mod 23) and 6

−1
 ≡ 4 (mod 23), we obtain the 

congruence x 
2
 ≡ 4 (mod 23) with the solutions 2 or 21. It is easy to check 

that 2 is the only solution of the given congruence.  

 

Example. Solve the congruence x 
10

 ≡ 35 (mod 43).  

 

Solution: We have 43 = 10 · 4 + 3. Since g.c.d. (10, 42) = 2 and 35
21

 ≡ 1 

(mod 43), the given congruence has two solutions. Both solutions of the 

quadratic congruence, to which the given congruence will be reduced, are 

the solutions of the given congruence. It is easy to follow the chain of 

formulas: 

    x 
40

 ≡ 11 (mod 43), 

   x 
42

 ≡ 11x
 2
 (mod 43),  

   11x
 2
 ≡ 1 (mod 43),  

   x 
2
 ≡ 4 (mod 43),    

   x ≡ 2 (mod 43)  

or  

   x ≡ 41 (mod 43).  

 

Both 2 and 41 are the solutions of the given congruence. 

 

5.5 SUMMARY 
 

Congruence may be viewed as a generalized form of equality, in the sense 

that its behavior with respect to addition and multiplication is reminiscent of 

ordinary equality. 

 

5.6 KEYWORDS 
 

1.  Argument:an argument of a function is a value that must be provided to 

obtain the function's result. 
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2. Inverse :an inverse operation is an operation that undoes what was done 

by the previous operation 

 

3. A combination is a mathematical technique that determines the number 

of possible arrangements in a collection of items where the order of the 

selection does not matter. 

 

4. Consistent : In mathematics and in particular in algebra, a linear or 

nonlinear system of equations is consistent if there is at least one set of 

values for the unknowns that satisfies every equation in the system 

 

5. Unique - Unique means that a variable, number, value, or element is one 

of a kind and the only one that can satisfy the conditions of a given 

statement. 

5.7 QUESTIONS FOR REVIEW 
 

1. Give an example to show that a
2
 ≡ b

2
 (mod n) need not imply that a= 

b (modn). 

2. Use the theory of congruences to verify that 89 | 2
44

 – 1  

3. Establish that if a is an odd integer, then for any n ≥ 1 

   
= 1 (mod 2

n+2
) 

4. Establish that if a is an odd integer, then for any n ≥1 
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6. T.M. Apostol, Introduction to Analytic number theory, UTM, Springer, 
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5.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. .[HINT: Provide definition ,representation and example—5.1.1] 

2. [HINT: Provide statement of 4 properties with proof—either 5.1.4 or 

5.1.5] 

3. [HINT: Provide definition, example with explanantion and also 

provide one related theorem and proof—5.2.1 ,5.2.2] 

4. [HINT: Provide definition and explain with the help of theorem –

5.2.6 & 5.2.7] 
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UNIT 6: CONGRUENCE 
 

STRUCTURE 
 

6.0 Objectives 

6.1 Binary and Decimal Representations of Integers 

       6.1.1 Theorem 

       6.1.2 Theorem 

       6.1.3 Theorem  

6.2 The Chinese Remainder Theorem 

       6.2.1 Definition  

       6.2.2 Theorem (Chinese Remainder Theorem)  

       6.2.3 Theorem 

       6.2.4 Theorem 

       6.2.5 Theorem 

6.3 Summary 

6.4 Keyword 

6.5 Questions for review 

6.6 Suggested Readings 

6.7 Answer to check your progress 

 

6.0 OBJECTIVE 
 

Understand the binary and Decimal representation of integers 

Enumerate the Chinese remainder theorem 

 

6.1 BINARY AND DECIMAL 

REPRESENTATIONS OF INTEGERS 
 

Given an integer b > 1, any positive integer N can be written uniquely in 

terms of powers of b as 
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   N = amb
m
+ am-1b

m-1
+ ···+ a2b

2
+ a1b + ao 

where the coefficients ak can take on the b different values 0, 1, 2, ... , b- 1. 

For   the Division Algorithm yields integers q1 and a0 satisfying  

   N = q1b + a0  0 ≤ a0 < b 

 

Ifq1 ≥b, we can divide once more, obtaining 

   q1 = q2 b + a1  0 ≤ a1 < b 

Now substitute for q1 in the earlier equation to get 

 

  N = (q2b + a1)b + ao= q2b2+ a1b + ao 

As long as q2≥b, we can continue in the same fashion.  

Going one more step: 

q2 = q3b + a2, where 0 ≤ a2<b; hence 

N = q3b
3
+ a2b

2
+ a1b + ao 

 

Because N > q1> q2> · · · ≥ 0 is a strictly decreasing sequence of integers, 

thisprocess must eventually terminate, say, at the (m - 1)th stage, where 

qm – 1  = qm b + am – 1   0 ≤ a m-1 < b 

nd 0 ≤qm <b. Setting am= qm, we reach the representation 

   N = ambm+ am-1b
m-

+ ···+ a1b + ao 

which was our aim. 

 

To show uniqueness, let us suppose that N has two distinct representations, 

say, 

   N = amb
m
 + ... +a1b+ ao= Cmbm+ ... + c1b +co 

 

with 0 ≤ai <b for each i and 0 ≤cj <b for each j (we can use the same m by 

simply adding terms with coefficients ai= 0 or cj= 0, if necessary).  

Subtractingthe second representation from the first gives the equation 

    0 = dmb
m
+ ···+ d1b +do 

where di = ai- c; fori = 0, 1, ... , m. Because the two representations for N 

areassumed to be different, we must have di≠ 0 for some value of i. Take k to 

be thesmallest subscript for which dk ≠0. Then 
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    0 = dmb
m
+ ···+ dk+1b

k+l 
+ dkb

k
 

and so, after dividing by b
k
, 

    dk= -b(dm
m-k-1

+ ···+ dk+l) 

 

This tells us that b|dk. Now the inequalities 0 ≤ak < band 0 ≤ck <b lead us 

to-b <ak- ck<b, or |dk|<b. The only way of reconciling the conditions b |dkand 

|dk|<b is to have dk= 0, which is impossible. From this contradiction, we 

conclude that the representation of N is unique. 

The essential feature in all of this is that the integer N is completely 

determinedby the ordered array am, am – 1... , a,, aoof coefficients, with the 

plus signs and thepowers of b beingsuperfluous. Thus, the number 

  N = amb
m
 +a m-1b

m-1
+···+ a2b

2
 + a1b + a0 

may be replaced by the simpler symbol(the right-hand side is not to be 

interpreted as a product, but only as an abbreviationfor N). We call this the 

base b place-value notation for N. 

 

Example: Calculate 5
110

 (mod 131), first note that the exponent 110 can 

beexpressed in binary form as 

110 = 64 + 32 + 8+ 4 + 2 = (110110)2 

 

Thus, we obtain the powers   
(mod 131) for 0≤j ≤ 6 by repeatedly squaring 

whileat each stage reducing each result modulo 131: 

5
2
≡ 25 (mod 131) 

5
4 
≡101 (mod 131) 

5
8
≡ 114 (mod 131) 

5
16

≡ 27 (mod 131) 

5
32

≡ 74 (mod 131) 

5
64

≡ 105 (mod 131) 

When the appropriate partial results-those corresponding to the 1's in the 

binaryexpansion of 110---are multiplied, we see that 

5
110

 = 5
64+32+8+4+2

 

= 5
64

 . 5
32

 . 5
8
 .5

4
 . 5

2
 

=105 · 74 · 114 · 101·25 ≡60 (mod 131) 
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As a minorvariation ofthe procedure, one might calculate, modulo 131, the 

powers 

5, 5
2
, 5

3
, 5

6
,5 

12
,5

24
,5

48
,5

96
 to arrive at 

5
110

 = 5
96

 · 5
12

 ·5
2
≡ 41 · 117 · 25 ≡ 60 (mod 131) 

which would require two fewer multiplications. 

 

Example:Find the expansion of 214 base 3: 

Solution:  

214 = 3· 71 + 1 

71 = 3 ·23 + 2 

23 = 3 ·7 + 2 

7 = 3 ·2 + 1 

2 = 3 ·0 + 2 

As a result, to obtain a base 3 expansion of 214, we take the remainders of 

divisions and we get that  

(214)10 = (21221)3 

6.1.1 Theorem 

Let P(x) =∑    
  

   be a polynomial function of x with integralcoefficients 

ck. If a= b (mod n), then P(a) = P(b) (mod n). 

 

Proof.Because a =b (mod n), can be applied to giveak= bk(mod n) fork= 0, 1, 

... , m. Therefore, 

     cka
k
=ckb

k 
(mod n) 

for all such k. Adding these m + 1 congruences, we conclude that 

 

 

 

 

or, in different notation, P(a) =P(b) (mod n). 
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If P(x) is a polynomial with integral coefficients, we say that a is a solution 

ofthe congruence P(x) =0 (mod n) if P(a) =0 (mod n). 

 

Corollary 

If a is a solution of P(x) = 0 (mod n) and a= b (mod n), then b also is 

asolution. 

 

Proof.From the last theorem, it is known that P(a) = P(b) (mod n). Hence, if 

a is asolution of P(x) = 0 (mod n), then P(b) = P(a) = 0 (mod n), making b a 

solution. 

6.1.2 Theorem 

Let N =am10
m

+ am-110
m-1

+···+a110 + a0 be the decimal expansion of the 

positive integer N, 0≤ ak < 10, and letS= a0 +a1+···+am. Then9 |N if and only 

if 9 | S. 

 

Proof.Consider P(x) =   ∑    
  

     a polynomial with integral coefficients. 

The keyobservation is that 10 = 1 (mod 9), whence by Theorem 6.1.1, 

P(10)≡P(1) (mod 9). 

But P(10) = N and P(1) = a0 +a1+···+am= S, so that N ≡S (mod 9). It follows 

that N ≡0 (mod 9) if and only if S ≡0 (mod 9), which is what we wanted 

toprove. 

6.1.3 Theorem  

Let N =am10
m

+ am-1 10
m-1

+···+a110 + a0be the decimal expansion of 

thepositive integer N, 0 ≤ak< 10, and let T = a0 - a1 + a2 - …+ (-1)
m
am. Then 

11|N if and only if 11|T. 

Proof.As in the proof of Theorem 6.1.3, put P(x) =∑    
  

   . Because 10 = 

- 1(mod 11), we get P(10) = P(-1) (mod 11). But P (10) = N, whereas P(-1) 
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= a0 - a1 + a2 - …+ (-1)
m
am = T, so that N = T (mod 11). The implication is 

thateither both N and T are divisible by 11 or neither isdivisible by 11. 

 

Example. To see an illustration of the last two results, take the integer N 

=1,571,724. Because the sum1 + 5 + 7 + 1 + 7 + 2 + 4 = 27is divisible by 9, 

Theorem 6.1.3 guarantees that 9 divides N. It also can be divided by11; for, 

the alternating sum4-2+7-1+7-5+1=11is divisible by 11. 

 

Check Your Progress1 

1.What is base b place-value notation? 

 

 

2. Explain the concept of decimal expansion of the positive integer. 

 

 

 

6.2 THE CHINESE REMAINDER THEOREM 

6.2.1 Definition  

A linear congruence has the form ax ≡ b (mod n) where x isa variable. 

 

Example The linear congruence 2x ≡ 1 (mod 3) is solved by x =2 because 2 

· 2 = 4 ≡ 1 (mod 3). The solution set of that congruence is{. . . , 2, 5, 8, 11, . . 

. }. 

Example The congruence 4x ≡ 1 (mod 2) has no solution, because 4x 

is even, and so is not congruent to 1, modulo 2. 
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Lemma  

Fix a modulus m and a number a. The congruence ax ≡ b(mod m) has a 

solution if an only if gcd(a, m) | b. If a solution x0 does existthen, where d = 

gcd(a, b), the set of solutions is{. . . , x0 + (−m/d), x0, x0 + (m/d), x0+ (2m/d), 

x0 + (3m/d), . . . }the residue class [x0] modulo m/d. 

Proof. The existence of an x solving ax ≡ b (mod m) is equivalent to 

theexistence of a k such that ax − b = km, which in turn is equivalent to 

theequivalence of a k such that xa + (−k)m = b.  

 

Lemma If gcd (a, b) = 1 and c is a number such that a | c and b | c thenab | c 

Proof. Because a | c and b | c there are numbers ka, kb such that kaa = c 

andkbb = c.By Bezout‘s Lemma, there are s and t such that as + bt = 1. 

Multiplyby c to get cas + cbt = c. Substitution gives (kbb)as + (kaa)bt = c. 

Then abdivides the left side of the equation and so ab must divide the right 

side, c.  

6.2.2 Theorem (Chinese Remainder Theorem)  

Suppose that m1, . . . , mnare pairwiserelatively prime (that is, gcd(mi, mj) = 1 

whenever i ≠j). Thenthe system of congruences 

   x ≡ a1 (mod m1) 

   x ≡ a2 (mod m2) 

    . 

    . 

    . 

   x ≡ an (mod mn) 

has a unique solution modulo m1m2. . . mn. 

Proof. Let M = m1m2. . . mnand for i ∈ {1, . . . , n} let Mi= M/mi=m1m2. . . 

mi−imi+1. . . mn.  

 

Observe that gcd(Mi, mi) = 1 and so Lemma 6.2.2 says that the linear 

congruence  
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Mix ≡ 1 (mod mi) has a set of solutions thatis a single congruence class [xi] 

modulo mi. 

 

Now consider the number 

  s0 = a1M1x1 + a2M2x2 + · · · + anMnxn. 

We claim that s0 solves the system. For, consider the i-th congruence x ≡ 

ai(mod mi).  

Because mi divides Mjwhen i ≠j, we have that s0≡ aiMixi(mod mi). Since 

xiwas chosenbecause of the property that Mixi ≡ 1 (mod mi),we have that s0≡ 

ai · 1 ≡ ai(mod mi), as claimed. 

 

To finish we must show that the solution is unique modulo M. Suppose thatx 

also solves the system, so that for each i ∈ {1, . . . , n} we have that x ≡ ai ≡ 

x0(mod mi).  

Restated, for each i we have that ni | (x − x0). 

 

We can now show that m1m2. . . mn | (x−x0). We have that gcd(m1, m2) =1 

and m1 | (x − x0) and m2 | (x − x0), so the prior lemma applies and 

weconclude that m1m2| (x − x0). In this way, we can build up to the 

entireproduct m1. . . mn. 

 

Example: First consider the linear congruence 18x = 30 (mod 42). 

Becausegcd (18, 42) = 6 and 6 surely divides 30, concept of linear 

congruence guarantees the existence ofexactly sixsolutions, which are 

incongruent modulo 42. By inspection, one solutionis found to be x = 4. Our 

analysis tells us that the six solutions are as follows: 

x = 4 + (42/6)t = 4 + 7t (mod 42)    t = 0, 1, ... , 5 

or, plainly enumerated, 

 

x =4, 11, 18, 25, 32, 39 (mod 42) 

 

Example:The problem posed by Sun-Tsu corresponds to the system of 

threecongruences 
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   x = 2 (mod 3) 

   x = 3 (mod 5) 

   x = 2 (mod 7) 

In the notation of Theorem 6.2.4, we have n = 3 ·5 ·7 = 105 and 

   
 

 
    

 

   
 

 
    

 

   
 

 
    

 

Now the linear congruences 

35x = 1 (mod 3)   21x = 1 (mod 5)   15x = 1 (mod 7) 

are satisfied by x1 = 2, x2 = 1, x3= 1, respectively. Thus, a solution of the 

system isgiven by 

  x= 2 · 35 · 2 + 3 ·21 · 1+ 2 · 15 · 1 = 233 

Modulo 105, we get the unique solution x = 233 = 23 (mod 105). 

 

Example: Solve the linear congruence17x = 9 (mod 276) 

Because 276 = 3 ·4 ·23, this is equivalent to finding a solution for the system 

ofcongruences 

  17x ≡ 9 (mod 3) 

  17x ≡ 9 (mod 4) 

  17x ≡ 9 (mod 23) 

  or x ≡ 0 (mod 3) 

  x≡1(mod4) 

  17x = 9 (mod 23) 

Note that if x = 0 (mod 3), then x = 3k for any integer k. We substitute into 

the secondcongruence of the system and obtain 

   3k ≡ 1 (mod4) 

Multiplication of both sides of this congruence by 3 gives usk≡9k ≡ 3 (mod 

4) 
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so that k = 3 + 4j, where j is an integer. Then 

     x= 3(3 +4j) = 9+ 12j 

For x to satisfy the last congruence, we must have 

    17(9 + 12j) ≡ 9 (mod 23) 

or204j ≡ -144 (mod 23), which reduces to 3j ≡ 6 (mod 23); in consequence, j 

≡ 2(mod 23). This yields j ≡ 2 + 23t, with t an integer, where 

   x = 9 + 12(2 + 23t) = 33 + 276t 

All in all, x ≡33 (mod 276) provides a solution to the system of congruences 

and, intum, a solution to 17x ≡ 9 (mod 276) 

6.2.3 Theorem 

The system of linear congruences 

    ax +by ≡r (mod n) 

    ex + dy ≡s (mod n) 

has a unique solution modulo n whenever gcd(ad- be, n) = 1. 

 

Proof. Let us multiply the first congruence of the system by d, the second 

congruenceby b, and subtract the lower result from the upper. These 

calculations yield 

  (ad- bc)x ≡dr- bs (mod n)    (1) 

The assumption gcd(ad- be, n) = 1 ensures that the congruence 

    (ad- bc)z≡1 (mod n) 

posseses a unique solution; denote the solution by t. When congruence (1) is 

multipliedby t, we obtain 

    x ≡t(dr - bs) (mod n) 

A value for y is found by a similar elimination process. That is, multiply the 

firstcongruence ofthe system by c, the second one by a, and subtract to end 

up with 

    (ad- bc)y ≡as- cr (mod n) 
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Multiplication of this congruence by t leads to 

    y≡t(as- cr) (mod n) 

A solution of the system is now established. 

 

Example. Consider the system 

    7x + 3y≡ 10 (mod 16) 

    2x + 5y ≡9 (mod 16) 

Because gcd(7 · 5 - 2 ·3, 16) = gcd(29, 16) = 1, a solution exists. It is 

obtained bythe method developed in the proof of Theorem 6.2.5. 

Multiplying the first congruenceby 5, the second one by 3, and subtracting, 

we arrive at 

    29x ≡ 5 · 10 – 3 ·9 ≡ 23 (mod 16) 

or, what is the same thing, 13x ≡ 7 (mod 16). Multiplication of this 

congruence by 5(noting that 5 · 13 ≡ 1 (mod 16)) produces x = 35 = 3 (mod 

16). When the variablex is eliminated from the system of congruences in a 

like manner, it is found that 

    29y ≡ 7 ·9-2 · 10 ≡ 43 (mod 16) 

But then 13y ≡ 11 (mod 16), which upon multiplication by 5, results in y 

≡55≡7 (mod 16). The unique solution of our system turns out to be 

                                               

 

Example: Let us solve the system 

 

 

 

 

Solution: Using the method in our first proof of the Chinese Remainder 

Theorem, we replace the first congruence by x = 1 + 3y.  

Substituting this into the second congruence we obtain  

    3y + 1 ≡ 2 (mod 4) or 3y ≡ 1 (mod 4).  

 

This congruence has the solutions y ≡ −1 (mod 4), i.e. y = −1 + 4z.  

Hence,  
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      x = −2 + 12z,  

and substituting this into the last congruence we end up in the congruence 

12z − 2 ≡ 3 (mod 5) or 12z ≡ 5 ≡ 0 (mod 5).  

 

This congruence has the unique solution  

    z ≡ 0 (mod 5), that is z = 5t and x = −2 + 60t.  

Hence, the system has the unique solution x ≡ −2 (mod 60).  

 

Solution 2: Let us instead use the method of the second proof. Then we have 

first to findnumbers b1, b2, and b3 such that  

 20b1 ≡ 1 (mod 3), 15b2 ≡ 1 (mod 4),  12b3 ≡ 1 (mod 5).  

One easily obtains b1 = 2, b2 = 3, and b3 = 3.  

Next, we compute  

   δ1 = 20b1 = 40, δ2 = 15b2 = 45, and δ3 = 12b3 = 36.  

 

Finally, x = δ1 + 2δ2 + 3δ3 = 40 + 90 + 108 = 238 ≡ 58 (mod 60). 

6.2.4 Theorem 

If m = m1m2, where the integers m1 and m2 are relatively prime, 

then 

φ(m) = φ(m1)φ(m2). 

Corollary  

If n = pk 11pk 22 · · · pk rr, where p1, p2, . . . , pr are different primes, 

then 

 

 

Proof. By repeated application of Theorem 6.2, we obtain 

φ(m1m2 · · · mr) = φ(m1)φ(m2) · · · φ(mr) 

if the integers m1, m2, . . . , mr are pairwise relatively prime. In particular, 
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this 

holds when the numbers mi are powers of distinct primes. By Example 5 in 

section 4, φ(pk) = pk−1(p − 1) = pk(1 − 1/p) if p is prime. 

Definition 

A polynomial      ∑    
  

   with coefficients ai ∈Z is called an integral 

polynomial, and the congruence 

    f(x) ≡ 0 (mod m), 

is called a polynomial congruence. An integer a is called a solution or a root 

ofthe polynomial congruence if f(a) ≡ 0 (mod m). 

 

If a is a root of the polynomial congruence and if b ≡ a (mod m), then b 

isalso a root. Therefore, in order to solve the polynomial cogruence it is 

enoughto find all roots that belong to a given complete residue system C(m) 

modulom, e.g. to find all solutions among the numbers 0, 1, 2, . . . , m − 1. 

By thenumber of roots of a polynomial congruence we will mean the 

number of such 

incongruent roots. 

 

Consider a system 

 

 

 

 

 

 

of polynomial congruences, where the moduli m1, m2, . . . , mrare assumed to 

bepairwiserelatively prime. By a solution of such a system we mean, of 

course,an integer which solves simultaneously all the congruences of the 

system. If ais a solution of the system, and if b ≡ a (mod m1m2· · · mr), then 

b is also asolution of the system, since for each j we have b ≡ a (mod mj). 

Hence, tofind all solutions of the system it suffices to consider solutions 
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belonging to a complete residue system modulo m1m2· · · mr; by the number 

of solutions of thesystem we will mean the number of such incongruent 

solutions. 

 

Theorem 6.2.9Let 

 

 

 

 

 

be a system of polynomial congruences, and assume that the the moduli m1, 

m2,..., mr are pairwise relatively prime. Let Xj be a complete set of 

incongruentsolutions modulo mj of the jth congruence, and let nj denote the 

number ofsolutions. The number of solutions of the system then equals n1n2· 

· · nr, andeach solution of the system is obtained as the solution of the 

system 

 

 

 

 

 

with (a1, a2, . . . , ar) ranging over the set X1 × X2 × · · · × Xr.Of course, a 

set Xj might be empty in which case nj = 0 

 

Proof. Write m = m1m2 · · · mr, let C(mj) be a complete residue system 

modulomj containing the solution set Xj (j = 1, 2, . . . , r), and let C(m) be a 

completeresidue system modulo m containing the solution set X of the 

system (5) ofcongruences. By the Chinese Remainder Theorem we obtain a 

bijection 

  τ : C(m) → C(m1) × C(m2) × · · · × C(mr) 

by defining 

   τ(x) = (x1, x2, . . . , xr), 
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where each xj ∈ C(mj) is a number satisfying the congruence xj ≡ x (mod 

mj).If a ∈ X, then a is a solution of each individual congruence in the system 

(5).Consequently, if aj ∈ C(mj) and aj ≡ a (mod mj), then aj is a solution of 

thejth congruence of the system, i.e. aj belongs to the solution set Xj. We 

concludethat τ(a) = (a1, a2, . . . , ar) belongs to the set X1 ×X2 ×· · ·×Xr for 

each a ∈ X,and the image τ(X) of X under τ is thus a subset of X1 × X2 × · · · 

× Xr.Conversely, if τ(a) = (a1, a2, . . . , ar) ∈ X1 ×X2 ×· · ·×Xr, then a 

solves eachindividual congruence and thus belongs to X. As a ≡ aj (mod mj) 

and fj(aj) ≡ 0 (mod mj) for each j. Hence,the bijection τ maps the subset X 

onto the subset X1 × X2 × · · · × Xr, and weconclude that the number of 

elements in X equals n1n2 · · · nr. 

 

Example: Consider the system 

 

 

 

By trying x = 0, ±1, ±2, ±3, we find that x ≡ 2 (mod 7) and x ≡ −3 (mod 

7)are the solutions of the first congruence. Similarly, we find that x ≡ −1 

(mod 6)and x ≡ 2 (mod 6) solve the second congruence. We conclude that 

the systemhas 4 incongruent solutions modulo 42. To find these, we have to 

solve each ofthe following four systems: 

 

 

 

We use the solution formula (4) obtained in the proof of the Chinese 

RemainderTheorem. Thus, we determine b1 and b2 such that 

  

 
 b1≡ 1 (mod 7) and  

  

 
 b2 ≡ 1 (mod 6). 
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We easily find that b1 = −1 and b2 = 1 solve these congruences, and hence 

we can take δ1 = −6 and δ2 = 7. We conclude that four different solutions 

modulo 42 of our original system are 

    x1 = −6 · 2 + 7 · (−1) = −19 ≡ 23 

    x2 = −6 · 2 + 7 · 2 = 2 

    x3 = −6 · (−3) + 7 · (−1) = 11 

    x4 = −6 · (−3) + 7 · 2 = 32. 

6.2.5 Theorem 

Let f(x) be an integral polynomial. For each positive integer m, let X(m) 

denote a complete set of roots modulo m of the polynomial congruence f(x) 

≡ 0 (mod m), 

and let N(m) denote the number of roots. 

Assume m = m1m2 · · · mr, where the numbers m1, m2, . . . , mr are pairwise 

relatively prime; then 

N(m) = N(m1)N(m2) · · · N(mr). 

Moreover, to each r-tuple (a1, a2, . . . , ar) ∈ X(m1)×X(m2)×· · ·×X(mr) 

there 

corresponds a unique solution a ∈ X(m) such that a ≡ aj (mod mj) for each 

j. 

 

Proof. The congruence f(x) ≡ 0 (mod m) is equivalent to the system 

 

 

Hence, Theorem 6.2.9 applies. It follows that in order to solve a polynomial 

congruence modulo m it is sufficient to know how to solve congruences with 

prime power moduli. 
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Example  Let f(x) = x2 + x + 1. Prove that the congruence f(x) ≡ 0 (mod 15) 

has no solutions. 

 

Solution: By trying the values x = 0, ±1, ±2 we find that the congruence f(x) 

≡ 0 (mod 5) has no solutions. Therefore, the given congruence modulo 15 (= 

5 · 3) has no solutions. 

 

Example: Let f(x) = x2 + x + 9. Find the roots of the congruence  f(x) ≡ 0 

(mod 63). 

 

Solution: Since 63 = 7 · 9, we start by solving the two congruences  

    f(x) ≡ 0 (mod 7) and f(x) ≡ 0 (mod 9). 

 

The first congruence has the sole root 3 (mod 7), and the second congruence 

has the roots 0 and −1 (mod 9). It follows that the given congruence has two 

roots modulo 63, and they are obtained by solving the congruences 

    x ≡ 3 (mod 7)   and x ≡ −3 (mod 7)  

   x ≡ 0 (mod 9)           x ≡  1 (mod 9). 

 

Using the Chinese remainder theorem, we find that the roots are 45 and 17 

modulo 63. 

 

6.3 SUMMARY 
 

Congruence theory is frequently used to append an extra check digit to 

identification numbers, in order to recognize transmission errors or 

forgeries. Personal identification numbers ofsome kind appear on passports, 

credit cards, bank accounts,and a variety of other settings. 

The binary system is most convenient for use in modem electronic 

computing machines, because binary numbers are represented by strings of 

zeros and ones; 0 and 1 can be expressed in the machine by a switch (or a 

similar electronic device) being either on or off 
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6.4 KEYWORDS 
 

1. Notation -A mathematical notation is a writing system used for 

recording concepts in mathematics. The notation uses symbols or 

symbolic expressions that are intended to have a precise 

semantic meaning 

2. Expansion - any mathematical series that converges to a function for 

specified values in the domain of the function, as 1 + x + x
2
 + … for 

1/(1 − x) when x < 1. 

3. Decimal - the numbers we use in everyday life are decimal numbers, 

because they are based on 10 digits 

4. Binary -  binary number is a number expressed in the base-2 

numeral system or binary numeral system, which uses only two 

symbols: typically "0" (zero) and "1" (one).  

 

6.5 QUESTIONS FOR REVIEW 
 

1. Use the binary exponentiation algorithm to compute both 19
53

 (mod 

503) and 141
47

 

(mod 1537). 

2. Convert (7482)10to base 6 notation 

3. Assuming that 495 divides 273x49y5, obtain the digits x andy. 

4. Solve the linear congruence 9x = 21 (mod 30). 

5. Solve the linear congruence 17x = 9 (mod 276) 

 

6.6 SUGGESTED READINGS 
 

10. David M. Burton, Elementary Number Theory, University of New 

Hampshire. 

11. G.H. Hardy, and , E.M. Wrigh,. An Introduction to the Theory of 

Numbers (6th ed, Oxford University Press, (2008). 

12. W.W. Adams and L.J. Goldstein, Introduction to the Theory of 

Numbers, 3rd ed., Wiley Eastern, 1972. 
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13. A. Baker, A Concise Introduction to the Theory of Numbers, 

Cambridge University Press, Cambridge, 1984. 

14. I. Niven and H.S. Zuckerman, An Introduction to the Theory of 

Numbers, 4th Ed., Wiley, New York, 1980. 

15. T.M. Apostol, Introduction to Analytic number theory, UTM, 

Springer, (1976). 

16. J. W. S  Cassel, A. Frolich, Algebraic number theory, Cambridge. 

17. M Ram Murty, Problems in analytic number theory, springer. 

18. M Ram Murty and Jody Esmonde, Problems in algebraic number 

theory, springer. 

6.7 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. [HINT: Provide the notation and explanation with example—6.1 ] 

2. .[HINT: Explain with example –6.1.4] 
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UNIT 7: THECONGRUENCE –II 
 

STRUCTURE 
 

7.0 Objectives 

7.1 The Congruence                

       7.1.1 Definition 

       7.1.2 Theorem    

     7.1.3 Theorem 

    7.1.4 Theorem 

    7.1.5 Theorem 

    7.1.6 Theorem 

    7.1.7 Theorem 

    7.1.8 Theorem 

7.2 General Quadratic Congruence 

       7.2.1 Theorem 

7.3 The Legendre Symbol and Gauss‘ Lemma 

       7.3.1 Theorem 

       7.3.2 Theorem (Gauss‘ Lemma)  

       7.3.3 Theorem 

       7.3.4 Theorem 

7.4 Summary 

7.5 Keywords 

7.6 Questions for review 

7.7 Suggested readings 

7.8 Answer to check your progress 

 

7.0 OBJECTIVES 
 

Understand the application of the congruence                

Unfold the importance of quadratic congruence 

Understand the concept of Gauss Lemma 
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7.1 THE CONGRUENCE                
 

(1)                     

 

There are three main problems to consider.  

 

Firstly, when do solutions exist, secondly, how many solutions are there, and 

thirdly, how to find them. We will first show that we can always reduce a 

congruence of the form (1) to a congruence of the same form with (a, m) = 

1. 

Assume therefore that (a, m) > 1, and let p be a prime dividing (a, m), that is 

p | a and p | m. Suppose x is a solution of (1). Then p | x
2
 and hence p | x. 

Write x = py; then (1) is equivalent to p
2
y

2
 ≡ a (mod m). Divide by p to 

obtain 

 

(2)                           

 

There are three separate cases to consider: 

 

(i) If p
2
 | m and p

2
 | a, then (2) is equivalent to the congruence y

2
 ≡ a/p

2
 

(mod m/p
2
), and for each solution y0 of this congruence (if there are any), 

there are p incongruent solutions modulo m of the original congruence (1). 

These are 

      x ≡ py0 (mod m/p).  

 

If (a/p
2
, m/p

2
) > 1, we repeat the whole procedure. 

 

(ii) If p
2
 | m but p

2
6 | a, then (2) is a contradiction. Hence, (1) has no 

solutions in this case. 

(iii) If p
2
6 | m, then (p, m/p) = 1, and hence there is a number c such that cp 

≡ 1 (mod m/p). It follows that (2) is equivalent to the congruence  

     y
2
 ≡ ca/p (mod m/p).  

 



Notes 

122 

Any solution y0 of this congruence yields a unique solution  

      x ≡ py0 (mod m) of (1).  

 

If (ca/p, m/p) > 1 we can repeat the whole procedure. 

 

Note that if p2 | a, then  

     ca/p = cp· a/p
2
 ≡ 1· a/p

2
 ≡ a/p

2
 (mod m/p), 

 

i.e. (2) is equivalent to the congruence y
2
 ≡ a/p

2
 (mod m/p) in that case. 

 

Example: Solve the four congruences: 

(i) x
2
 ≡ 36 (mod 45),    (ii) x

2
 ≡ 15 (mod 45), 

(iii) x
2
 ≡ 18 (mod 21),   (iv) x

2 
≡ 15 (mod 21). 

 

Solution: 

 (i) Here (36, 45) = 9 and writing x = 3y we obtain the equivalent congruence 

y
2
 ≡ 4 (mod 5) with the solutions y ≡ ±2 (mod 5). Hence x ≡ ±6 (mod 15), 

i.e. 6, 9, 21, 24, 36, and 39 are the solutions of (i). 

 

(ii) Since 9 | 45 but 96 | 15 there are no solutions of (ii). 

 

(iii) Since (18, 21) = 3, we write x = 3y and obtain the following sequence of 

equivalent congruences: 9y2 ≡ 18 (mod 21), 3y2 ≡ 6 (mod 7), y2 ≡ 2 (mod 

7) with the solutions y ≡ ±3 (mod 7). Hence (iii) has the solutions x ≡ 

±9(mod 21). 

 

(iv) Since (15, 21) = 3, we put x = 3y and obtain 9y2 ≡ 15 (mod 21), that is 

3y
2
 ≡ 5 (mod 7). Since 5·3 ≡ 1 (mod 7), we multiply the last congruence by 

5, which yields y2 ≡ 4 (mod 7) with the solutions y ≡ ±2 (mod 7). 

Consequently, x ≡ ±6 (mod 21) are the solutions of (iv). 

For the rest of this section, we will assume that (a, m) = 1. 
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7.1.1 Definition 

Suppose that (a, m) = 1. Then a is called a quadratic residue of m if the 

congruence x
2
 ≡ a (mod m) has a solution. If there is no solution, then a is 

called a quadratic nonresidue of m. 

 

By decomposing the modulus m into a product of primes, we reduce the 

study of the congruence (1) to a study of congruences of the form 

     x
2
 ≡ a (mod pk) 

 

where the modulus is a prime power.  However, since the derivative of x
2
 is 

2x, and 2x ≡ 0 (mod 2) we have to distinguish between the cases p = 2 and p 

odd prime. 

 

Lemma 

 If p is an odd prime, (a, p) = 1 and a is a quadratic residue of p, then the 

congruence x
2 
≡ a (mod p) has exactly two roots. 

 

Proof. By assumption, there is at least one root b. Obviously, −b is a root, 

too, and −b ≢ b (mod p), since b ≢ 0. As, there can not be more than two 

roots. 

7.1.2 Theorem  

If p is an odd prime and (a, p) = 1, then x2 ≡ a (mod pk) has exactly two 

solutions if a is a quadratic residue of p, and no solutions if a is a quadratic 

nonresidue of p. 

 

Proof. Let f(x) = x2 − a; then f0(x) = 2x is not divisible by p for any x ≢ 0 

(mod p). Hence, it follows from Lemma 7.1.2 that the equation x
2
 ≡ a (mod 

p
k
) has exactly two roots for each k if a is a quadratic residue. Since every 

solution of the latter congruence also solves the congruence 

x
2
 ≡ a (mod p), there can be no solution if a is a quadratic nonresidue of 
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p.The case p = 2 is different, and the complete story is given by the 

following theorem. 

 

7.1.3 Theorem 

Suppose a is odd. Then 

 

(i) The congruence x
2
 ≡ a (mod 2) is always solvable and has exactly one 

solution; 

 

(ii) The congruence x
2 
≡ a (mod 4) is solvable if and only if a ≡ 1 (mod 4), in 

which case there are precisely two solutions; 

 

(iii) The congruence x
2
 ≡ a (mod 2k), with k ≥ 3, is solvable if and only if a 

≡ 1 (mod 8), in which case there are exactly four solutions. If x0 is a 

solution, then all solutions are given by ±x0 and ± x0 + 2
k−1

. 

 

Proof. (i) and (ii) are obvious. 

 

(iii) Suppose x
2
 ≡ a (mod 2

k
) has a solution x0. Then obviously   

 ≡ a (mod 

8), and x0 is odd since a is odd. But the square of an odd number is 

congruent to 1 modulo 8, and hence a ≡ 1 (mod 8). This proves the necessity 

of the condition a ≡ 1 (mod 8) for the existence of a solution. Moreover, 

(−x0)
2
 =   

  ≡ a (mod 2
k
) and (±x0 + 2

k−1
)
2
 =   

  ± 2
k
x0 + 2

2k−2 
≡   

 ≡ ≡ a 

(mod 2
k
), 

since 2k − 2 ≥ k. It is easily verified that the four numbers ±x0 and ±x0 + 

2
k−1 

are incongruent modulo 2k. Hence, the congruence has at least four 

solutions if there is any. 

 

It remains to verify that the condition on a is sufficient and that there are at 

most four solutions. We show sufficiency by induction on k. The case k = 3 

is clear, since x2 ≡ 1 (mod 8) has the solution x ≡ 1. Now assume that x
2 
≡ a 
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(mod 2
k
) is solvable with a solution x0. Then we know that ±x0 and ±x0+2

k−1 

also solve the congruence, and we will prove that one of them also solves 

the congruence 

 

(3)       x
2 
≡ a (mod 2

k+1
). 

 

We know that   
 ≡ = a+2

k
n for some integer n. If n is even, then x0 is 

obviously 

a solution of (3). If n is odd, then 

 

  (x0 + 2
k−1

)
2
 =   

 ≡ + 2
k
x0 + 2

2k−2 
= a + 2

k
(n + x0) + 2

2k−2 
≡ a (mod 2

k+1
), 

 

because (n +x0) is even (since n and x0 are both odd) and 2k − 2 ≥ k + 1 

(since k ≥ 3). This completes the induction step 

 

Finally, in the interval [1, 2k] there are 2k−3 integers a that are congruent to 

1 modulo 8. For each such number a we have already found 4 different 

solutions of the congruence x
2
 ≡ a (mod 2k) in the same interval, all of them 

odd. Taking all these solutions together we get  

4 · 2
k−3 

= 2
k−1 

solutions. But there are exactly 2k−1 odd numbers in the 

interval, so there is no room for any more solutions. Hence, each 

equation has exactly four solutions. 

 

7.1.5 Theorem 

Let         
           

  , where the pi are distinct odd primes, and 

let a be a number which is relatively prime to m. Then the congruence x
2
 ≡ a 

(mod m) is solvable if and only if a is a quadratic residue of pi for each i, 

and a ≡ 1 (mod 4) in the case k = 2, and a ≡ 1 (mod 8) in the case k ≥ 3. If 

the congruence is solvable, then there are 2r solutions if k = 0 or k = 1, 2
r+1 

solutions if k = 2, and 2
r+2 

solutions if k ≥ 3. 

 

In order to apply Theorem 7.1.5 we need some criterion telling when a 
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number is a quadratic residue of given prime p. First, note that there are as 

many quadratic residues as nonresidues of an odd prime. 

7.1.4 Theorem 

Let p be an odd prime. Then there are exactly (p − 1)/2 incongruent 

quadratic residues of p and exactly (p − 1)/2 quadratic nonresidues of p. 

 

Proof. All quadratic residues can be found by squaring the elements of a 

reduced residue system. Since each solvable congruence x
2
 ≡ a (mod p) has 

exactly two solutions if (a, p) = 1, it follows that the number of quadratic 

residues equals half the number of elements in the reduced residue system, 

that is (p− 1)/2. To get all quadratic residues one can for example take 1
2
, 2

2
, 

. . . , [(p − 1)/2]
2
. 

 

Lemma  

Let p be an odd prime and suppose a ≢ 0 (mod p). Then modulo p 

 

 

Proof. The congruence mx ≡ a (mod p) is solvable for each integer m in the 

interval 1 ≤ m ≤ p − 1, i.e. for each m there is an integer n, 1 ≤ n ≤ p − 1 

such that mn ≡ a (mod p). If the congruence x
2
 ≡ a (mod p) has no solution, 

then n ≠  m. If it has a solution, then it has exactly two solutions of the form 

x ≡ m0 (mod p) and x ≡ p− m0 (mod p), and it follows that n ≠ m for all but 

two values of m. Now consider the product (p−1)! = 1·2·3 · · · (p−1). If the 

congruence x
2
 ≡ a (mod p) has no solution, then we can pair off the p − 1 

numbers into (p − 1)/2 pairs such that the product of the two numbers in 

each pair is congruent to a (mod p), and this means that (p − 1)! is congruent 

to a(p−1)/2. 

 

On the other hand, if the congruence has two solutions, m0 and p − m0, then 
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we take away these two numbers and pair off the remaining p − 3 numbers 

into (p − 3)/2 pairs such that the product of the two numbers in each pair is 

congruent to a (mod p). Since m0(p − m0) ≡ −  
  ≡ −a (mod p), it follows  

that (p − 1)! ≡ −a · a 
(p−3)/2 

≡ −a 
(p−1)/2

 (mod p). 

 

Lets recall the Wilson‘s theorem 

Wilson’s theorem If p is a prime then (p − 1)! ≡ −1 (mod p). 

 

First let us note that Wilson‘s theorem for p > 2 is a obtained as a special 

case of Lemma 7.1.7 by taking a = 1, which is obviously a quadratic residue 

of any prime p. Secondly, and more important, by combining Wilson‘s 

theorem with Lemma 1.1.7 we get the following solvability criterion due to 

Euler: 

7.1.5 Theorem 

(Euler‘s Criterion) Let p be an odd prime and suppose (a, p) = 1. Then a is a 

quadratic residue or nonresidue of p according as a(p−1)/2 ≡ 1(mod p) or 

a(p−1)/2 ≡ −1 (mod p). 

The following important result follows immediately from Euler‘s criterion. 

7.1.6 Theorem 

Let p be a prime.Then −1 is a quadratic residue of p if and only if p = 2 or p 

≡ 1 (mod 4). 

 

Proof. −1 is a quadratic residue of 2 since 1
2
 = 1 ≡ −1 (mod 2). For odd 

primes, we apply Euler‘s Criterion noting that (−1)
(p−1)/2 

= 1 if and only if (p 

− 1)/2 is even, that is if and only if p is a prime of the form 4k + 1. 

Let us also note that Fermat‘s theorem is an easy consequence of Euler‘s 

criterion; by squaring we obtain 
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Let us finally address the question of finding a solution to the congruence x
2
 

≡ a (mod p) assuming that a is a quadratic residue of p. In the case p ≡ 3 

(mod 4) we have the following answer. 

7.1.7 Theorem 

Let p be a prime and assume that p ≡ 3 (mod 4). If a is a quadratic residue 

of p, then the congruence x
2
 ≡ a (mod p) has the two solutions ± a(p+1)/4. 

 

Proof. Since a is a quadratic residue, a
(p−1)/2

 ≡ 1 (mod p). It follows that 

 

 

 

Note that it is not necessary to verify in advance that a
(p−1)/2 

≡ 1 (mod p). It 

is enough to compute x ≡ a
(p+1)/4 

(mod p). If x
2
 ≡ a (mod p), then ± x are the 

two solutions, otherwise x
2
 ≡ −a (mod p), and we can conclude that there 

are no solutions. 

 

Check Your Progress 1 

1. Explain the problems associated with                

 

 

  

2. What is Quadratic residue? 
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7.2 GENERAL QUADRATIC 

CONGRUENCES 
 

A general quadratic congruence 

(1)      ax
2
 + bx + c ≡ 0 (mod m), 

 

can be reduced to a system consisting of a congruence of the form y
2
 ≡ 

d(mod m’) and a linear congruence by completing the square. 

The simplest case occurs when (4a, m) = 1, because we may then multiply 

the congruence (1) by 4a without having to change the modulus m in order 

to get the following equivalent congruence 

      

     4a
2
x

2
 + 4abx + 4ac ≡ 0 (mod m), 

that is, 

     (2ax + b)
2
 ≡ b

2
 − 4ac (mod m). 

 

Writing y = 2ax + b, we obtain the following result. 

 

7.2.1 Theorem 

Assume that (4a, m) = 1. Then all solutions of the congruence 

     

    ax
2
 + bx + c ≡ 0 (mod m) 

 

can be found by solving the following chain of congruences 

   y
2
 ≡ b

2 
− 4ac (mod m),    2ax ≡ y − b (mod m). 

 

Since (2a, m) = 1, the linear congruence has a unique solution modulo m for 

each root y. 

 

Example Let us solve the congruence 8x
2 
+ 5x + 1 ≡ 0 (mod 23).  
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Solution : Complete the square by multiplying by 32 to get (16x+5)2 ≡ 

52−32 = −7 ≡ 16 (mod 23). 

Thus 16x + 5 ≡ ±4.  

Solving 16x ≡ −1 (mod 23) gives x ≡ 10, and 16x ≡ −9 (mod 23) yields x ≡ 

21.  

 

Hence, 10 and 21 are the only solutions of the original congruence. 

 

When (4a, m) ≠ 1, we start by factoring 4a = a1a2 in such a way that (a2, m) 

= 1. We may now multiply the congruence (1) by the number a2  without 

having to change the modulus, but when we then multiply by a1 we must 

change the modulus to a1m in order to get the equivalent congruence 

     4a
2
x

2
 + 4abx + 4ac ≡ 0 (mod a1m),  

which, of course, in turn is equivalent to the congruence  

     (2ax + b)
2
 ≡ b

2
 − 4ac (mod a1m).  

 

This proves the following generalization of theorem 7.2.1. 

 

Theorem 7.2.2 Write 4a = a1a2 with a2 relatively prime to m. Then all 

solutions of the congruence 

     ax
2
 + bx + c ≡ 0 (mod m) 

can be found by solving the following chain of congruences 

    y
2
 ≡ b

2
 − 4ac (mod a1m), 2ax ≡ y − b (mod a1m) 

 

Example: Let us solve the congruence 3x2 + 3x + 2 ≡ 0 (mod 10) using 

Theorem 7.2.2.. Since (4· 3, 10) = 2 6= 1 but (3, 10) = 1, multiplication by 4 

· 3 transforms the given congruence into the equivalent congruence 

    (6x + 3)2 ≡ 32 − 4 · 3 · 2 = −15 ≡ 25 (mod 40). 

The congruence y
2 
≡ 25 (mod 40) has four roots modulo 40, namely 5, 15, 

25, and 35. For each root y we then solve the linear congruence 6x ≡ y – 3 

(mod 40).  

The solutions are in turn x ≡ 7, 2, 17, 12 (mod 20), which means that the 

solutions of our original congruence are x ≡ 2 and x ≡ 7 (mod 10). 
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Example: Solve . 

According to Euler‘s Criterion, the equation 

   

has solutions  since .  

 

To find the solutions, we keep adding the modulus to  until we get a 

perfect square. 

 

 

So we have , which gives  and . The 

solutions are  and . 

 

7.3 THE LEGENDRE SYMBOL AND GAUSS’ 

LEMMA 
 

Let p be an odd prime.The Legendre symbol (
 

 
) is defined as 

follows 

 

 

 

7.3.1 Theorem 

Let p be an odd prime. Then 
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Proof. If p | a then (i) is obvious, and if (p, a) = 1 then (i) is just a 

reformulation of Euler‘s criterion (Theorem 7.1.8). The remaining parts are 

all simple consequences of (i). 

Because of Theorem 7.3.2 (iii) and (iv), in order to compute (
 

 
)for an 

arbitrary integer a it is enough, given its prime factorization, to know (
  

 
) , 

(
 

 
)  and   (

 

 
)for each odd prime q.  

7.3.2 Theorem (Gauss’ Lemma)  

Let p be an odd prime and suppose that the number a is relatively prime to p. 

Consider the least positive residues modulo p of the numbers a, 2a, 3a, ..., 

   

 
a. If N is the number of these residues that are greater than p/2, then 

(
 

 
)        

 

Proof. The numbers a, 2a, 3a, . . . , 
   

 
a are relatively prime to p and 

incongruent modulo p. Let r1, r2, . . . , rN represent the least positive residues 

that exceed p/2, and let s1, s2, . . . , sM denote the remaining residues, that is 

those   that are less than p/2; then N + M = (p − 1)/2. 

The quotient q when ja is divided by p is q = [ja/p]. (Here [x] denotes the 

greatest integer less than or equal to x.) It follows that  

 

(1)          ja = [ja/p] p + some ri or some sk. 

 

The numbers p − r1, p − r2, . . . , p − rN are positive and less than p/2, 

relatively prime to p and incongruent in pairs modulo p. Also, no p−ri is and 

sj. For suppose p − ri = sj, and let ri ≡ ma (mod p) and sj ≡ na (mod p), 

where m and n are distinct integers between 1 and p/2. Then  

 

    p = ri + sj ≡ (m + n)a (mod p),  

and since (a, p) = 1, we must have p | (m + n), a contradiction since 0 < m + 

n < p. 
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Thus, p − r1, p − r2, . . . , p − rN, s1, s2, . . . , sM are all different integers in 

the intervall [1, (p − 1)/2], and since they are M + N = (p − 1)/2 in number, 

they are equal in some order to the numbers 1, 2, . . . , (p − 1)/2. Therefore, 

 

    (p − r1)(p − r2) · · · (p − rN )s1s2 · · · sM = ((p − 1)/2)!, 

that is 

    (−1)
N 

r1r2 · · · rN s1s2 · · · sM ≡ ((p − 1)/2)! (mod p). 

 

But the numbers r1, r2, . . . , rN , s1, s2, . . . , sM are also congruent in some 

order to the numbers a, 2a, . . . , 
   

 
a and hence  

   (
   

 
)  ≡ (−1)

N
 a · 2a · · · · 

   

 
a = (−1)

N
 a

(p−1)/2 (
   

 
)  ≡ 

(mod p). 

 

Since each factor in ((p − 1)/2)! is relatively prime to p, we can divide each 

side of the last congruence by ((p− 1)/2)! to obtain a(p−1)/2 ≡ (−1)N (mod 

p). The conclusion of the lemma now follows from part (i) of Theorem 

7.3.2. 

As a simple application of Gauss‘ lemma, we now compute (
 

 
) 

7.3.3 Theorem 

Let p be an odd prime. Then 2 is a quadratic residue of p if p ≡ ±1 (mod 8), 

and a quadratic nonresidue of p if p ≡ ±3 (mod 8), that is 

 

 

 

 

Proof. Take a = 2 in Gauss‘ lemma; then N is the number of integers in the 

sequence 2, 4, . . . , p − 1 that are greater than p/2, that is N is the number of 

integers k such that p/2 < 2k < p, or equivalently p/4 < k < p/2. 

Consequently,  
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     N = [p/2] − [p/4].  

 

Taking p = 4n + 1 we get N = 2n − n = n, and p = 4n – 1 yields  

  

    N = (2n − 1) − (n − 1) = n, too.  

 

Hence, N is even if n is even, i.e. if p = 8m ± 1, and N is odd if n is so, i.e. if 

p = 8m ± 3. 

 

Example: The equation x
2
 ≡ 2 (mod 17) is solvable since 17 ≡ 1 (mod 8). 

Indeed, x ≡ ±6 (mod 17) solves the congruence. 

7.3.4 Theorem 

If p is an odd prime and a is an odd number that is not divisible 

by p, then 

 

 

 

Proof. We have to prove that n has the same parity as the number N in 

Gauss‘ lemma, i.e. that n ≡ N (mod 2). We use the same notation as in the 

proof of the lemma. By summing over j in equation (1), we obtain 

 

 

 

 

Since the numbers p − r1, p − r2, . . . , p − rN, s1, s2, . . . , sM are the numbers 

1, 2, . . . , (p − 1)/2 in some order, we also have 

 

 

 

Subtracting this from equation (2), we obtain 
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Since a − 1 is an even number, it follows that p(n − N) is even, that is n − N 

is even. 

 

Example: Let us use Theorem 7.3.4 to compute (
 

 
) for primes p ≥ 5. Since 

 

 

 

 

it follows that (
 

 
) = (−1)n, where n = (p − 1)/2 − [p/3]. By considering the 

cases p = 12k ± 1 and p = 12k ± 5 separately, we see that n is even if and 

only if p ≡ ±1 (mod 12). Hence, (
 

 
)= 1 if and only if p ≡ ±1 (mod 12). 

Gauss‘ lemma and Theorem 7.3.5 are too cumbersome for numerical 

calculations of (
 

 
) 

 

Check Your Progress 2 

1. Define Legendre symbol 

 

 

 

2. Explain Gauss Lemma 

 

 

 

 

3. What do you understand by Quadratic congruence? 
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7.4 SUMMARY 
 

Gauss Lemma has theoretical significance, being involved in some proofs of 

quadratic reciprocity. 

Quadratic Reciprocity is important in cryptography and in computer 

security. 

7.5 KEYWORDS 
 

1. Parity: In mathematics, parity is the property of an integer's 

inclusion in one of two categories: even or odd. 

 

2. Lemma - In mathematics, a "helping theorem" 

or lemma (plural lemmas or lemmata) is a proven proposition which 

is used as a stepping stone to a larger result rather than as a statement 

of interest by itself. 

 

3. Sequence - A list of numbers or objects in a special order. 

 

4. Incongruent - two numbers are incongruent when, after being 

divided by the same number, their remainders are different.  

 

5. Consequently is a word that has to do with cause and effect 

 

7.6 QUESTIONS FOR REVIEW 
 

1. Solve  

 

2. Use Gauss' lemma to compute each of the Legendre symbols below 

(that is, in each case 
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obtain the integer n for which (a/p) = (-1)
n
) 

(a) (8/11). 

(b) (7/13). 

3. For an odd prime p, prove that there are (p- 1)/2- ∅(p- 1) quadratic 

nonresidues of 

p that are not primitive roots of p. 

 

4. If pis an odd prime, show that  
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7.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. [HINT: Discuss three problems ---7.1] 

 

2. [HINT:Provide definition and related lemma—7.1.1 & 7.1.2 ] 

3. [HINT: Provide definition—7.3] 

4. [HINT:Provide statement with proof—7.3.2] 

5. [HINT:Provide definition with example –7.2 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




